Argon ne°

NATIONAL LABORATORY

Casper: Process-based Asynchronous Progress
Model for MPI One-Sided Communication

Scaling NWChem with Efficient and Portable

Asynchronous Communication on NERSC Edison Supercomputer

Min Silll, Antonio J. Pefiald, Jeff Hammond!3], Pavan Balajilt}, Yutaka Ishikawa!*!

[1] Argonne National Laboratory, USA [3] Intel Labs, USA
{msi, balaji}@anl.gov jeff.r.hammond@intel.com
[2] Barcelona Supercomputing Center, Spain [4] RIKEN AICS, Japan

antonio.pena@bsc.es yutaka.ishikawa@riken.jp

Irregular Computation in Scientific Applications

= Regular computations

— Organized around dense vectors or -

matrices

— Regular data movement pattern,
use MPI SEND/RECV or collectives —

— More local computation, less data

movement

— Example: stencil computation,

matrix multiplication, FFT* —

B _ - " oty
o ig " TN ST 2. .
Ly - S Increasing trend of applications are moving to e,
0 dio | XN irregular computation models ?’*
2l Te=r>0 222 %}1 Need more dynamic communication model -y
= = = x 2 : — ced® S -

* FFT : Fast Fourier Transform

2016-03-22

= |rregular computations

Organized around graphs, sparse
vectors, more “data driven” in

nature

Data movement pattern is
irregular and data-dependent

Growth rate of data movement
is much faster than computation
Example: quantum chemistry,

bioinformatics

NUG 2016 - NERSC Users Group Annual Meetings

NWChem

= High performance computational chemistry application suite

= Composed of many types of simulation capabilities
— Molecular Electronic Structure
— Quantum Mechanics/Molecular Mechanics
— Pseudo potential Plane-Wave Electronic Structure

— Molecular Dynamics

[1] M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma, H.J.J. van Dam, D. Wang, J. Nieplocha, E. Apra, T.L.
Windus, W.A. de Jong, "NWChem: a comprehensive and scalable open-source solution for large scale molecular
simulations" Comput. Phys. Commun. 181, 1477 (2010)

2016-03-22 NUG 2016 - NERSC Users Group Annual Meetings

NWChem Communication Runtime

NWChem

ARMCI : Communication interface for RMA

PUl e

Abstractions for distributed arrays
Global Address Space

Get\\ H

Physically distributed to different processes

VALY VARV,

ARMCI native ports

ﬂ m —

IB Cray Tianhe-2 K

o&ﬁ : NUG 2016 - NERSC Users Group Annual Meetings 4

MPI RMA Communication

= Two-sided communication

Process O Process 1

Sen a) —

(data)

ata)

ataje—— S

Feature:

One-sided communication
(Remote Memory Access)

Process O Process 1

Pu a) —

G

"Computation
"=
a) —— 13

Origin (PO) specifies all communication parameters
Target (P1) does not explicitly receive or process

message

Is communication always asynchronous ?

2016-03-22 NUG 2016 - NERSC Users Group Annual Meetings)

Outline

= Problem Statement

= Solution

Experimental Environment

= Evaluation

* Cray XC30
» 2.57 Petaflops/s peak performance
133,824 compute cores...

2016-03-22 NUG 2016 - NERSC Users Group Annual Meetings

Time

Inefficient Communication in NWChem

= “Gold standard” CCSD(T)

— Pareto optimal point of high accuracy

CCSD(T) internal phases in varying water problems

relative to computational cost

Internal phases in CCSD(T) task
Self-consistent field (SCF)

Four-index transformation
(4-index)

CCSD iteration

(T) portion

(T) Portion profiling for W,,

100% 16
H B B 2
80%

60%
40% -

20% -

0%

M 4-index MCCSD M (T) portion M Others E RMA B DGEMM
> Inefficient communication
~ 0,
W21 1704 3072 6144 12288

2016-03-22

W5

W16
Problem Sizes

Number of Cores
NUG 2016 - NERSC Users Group Annual Meetings 7

Lack of Asynchronous Progress in MPI RMA

= MPI one-sided operations are not truly one-sided !
— Some operations can be supported by hardware (e.g., PUT/GET on IB,
Cray, Tofu)

— Other operations still have to be handled by software (e.g., 3D
accumulates of double precision data)

Process O Process 1

Software implementation of one-sided
operations means that the target process
has to make an MPI call to make progress.

Not TRULY asynchronous !

Non-contiguous Accumulate in MPI

2016-03-22 NUG 2016 - NERSC Users Group Annual Meetings 8

Outline

= Problem Statement

= Solution

— Casper: Process-based asynchronous progress for MPI RMA

= Evaluation

Home page: http://www.mcs.anl.gov/project/casper

[1] “Casper: An Asynchronous Progress Model for MPI RMA on Many-Core Architectures.” M. Si, A,
Pena, J. Hammond, P.Balaji, M. Takagi, and Y. Ishikawa. IPDPS 2015.

[2] “Scaling NWChem with Efficient and Portable Asynchronous Communication in MPI RMA.” M. Si, A.
J Pena, J.Hammond, P. Balaji, and Y. Ishikawa. CCGrid 2015 (SCALE Challenge Final List).

2016-03-22 NUG 2016 - NERSC Users Group Annual Meetings

Traditional Approaches of ASYNC Progress

= Thread-based approach = [nterrupt-based approach
— Every MPI process has a — Assume all hardware resources
communication dedicated are busy with user computation
background thread on target processes
— Background thread polls MPI — Utilize hardware interrupts to
progress process awaken a kernel thread
Cons:
Cons:

X Overhead of frequent interrupts

X Waste 50% computing cores or
DMMAP-based ASYNC overhead on Edison

oversubscribe cores

[En
o

100000

. . g S System Interrupts 90000
X Overhead of Multithreading safety 5 4 p—originat WP 20000
Of M Pl 5 ; el VIMAP-based async 28888 @
5 S
pt 50000 £
E 4 40000 £
s 30000
PO BRIV P1 EmF! P2 mapi P3 ERE € 2 20000
— — — I g 10000
w 0 v~ - 0

1 4 16 64 256 1024

Number of Operations

2016-03-22 NUG 2016 - NERSC Users Group Annual Meetings 10

[Our Solution] Casper: Process-based ASYNC Progress

= Multi- and many-core architectures B B B B
— Rapidly growing number of cores . |Computing cores ‘=
— Not all of the cores are always keeping busy B - ..
= Casper

— Dedicating arbitrary number of cores to “ghost processes”

— Ghost process intercepts all RMA operations to the user processes

v" No multithreading / interrupts overhead
v" Flexible core deployment Process O Process1 Ghost

. . Process
v' Portable PMPI redirection ! ! ?
[
[
Process 0 Process 1 A Computation]
+=
[
putatlon &« - - - :
[
- !
< — -MI-II : :
Ongmal communication Communication with Casper

2016-03-22 NUG 2016 - NERSC Users Group Annual Meetings 11

Basic Design of Casper

MPI_COMM_WORLD
o 1 2 3 4
1. Transparently replace MPI_COMM_WORLD by
2

= Three primary functionalities

COMM_USER_WORLD

0o 1
2. Shared memory mapping between local user COMM_USER_WORLD

and ghost processes by using MPI-3

. *
MPI_Win_allocate_shared™. 3. Redirect RMA operations to ghost processes

Internal Memory mapping

PO P1 Ghost Process
Ghost P1 P2 for P1
Process Lock(P1) I [|
P1 offset — a : : | Recv
,:'_’—’:’/ LOCk(GO) M ',‘ Q\\
P2 offset — 1 : \
ACC(P1, disp, user_win) Computation
O

I
:
1 A '
I
I
I

|

|

|

|

ACC(GO, P1_offset + disp, AN

internal_win) !

* MPI_WIN_ALLOCATE_SHARED : Allocates window that is shared . I
I

among all processes in the window’s group, usually specified with ! !
MPI_COMM_TYPE_SHARED communicator.

2016-03-22 NUG 2016 - NERSC Users Group Annual Meetings 12

Challenges in Casper

= Ensuring Correctness and Performance

2016-03-22

Lock Permission Management
Self Lock Consistency
Managing Multiple Ghost Processes

Multiple Simultaneous Epochs

MPICH
|
i
Applications
Intel MPI
v’ Asynchronous progress MVAPICH

v Transparent & Portable

v’ Correctness
v Performance

NUG 2016 - NERSC Users Group Annual Meetings

13

Outline

= Problem Statement

= Solution

= Evaluation Experimental Environment

e 12-core Intel lvy Bridge * 2 (24 cores) per node
* Cray MPIv6.3.1

2016-03-22 NUG 2016 - NERSC Users Group Annual Meetings

Strong Scaling of (T) Portion for W21 Problem

Core deployment

= “Gold standard” CCSD(T)

Original MPI 24 0
= Water 21
Casper 23 1
— (T) portion dominates entire cost 1, .24 (0)
by 80% (with oversubscribed cores) 24 24
iCi s Thread (D
— |nefficient communication resulted (W:f,f dédi)cated cores) 12 12

in 50% additional overhead
Execution time

M Original MPI M Casper
B Thread(O) B Thread(D)

14.1

l Reduced !

N

1.2

o w o ©

1704 3072 6144 12288
Number of Cores

2016-03-22 NUG 2016 - NERSC Users Group Annual Meetings 15

WHY Casper Improves the Performance ?

COMP # ASYNC

Original MPI 24
Casper 23
Thread (O) 24
(with oversubscribed cores)

Thread (D)

(with dedicated cores) 12

W21 using 1704 cores

W RMA B DGEMM & Sort

Original Casper Thread (O) Thread (D)
MPI

0
1

24

12

Loss only 1 (4%) COMP cores

Core oversubscription

Loss 50% COMP cores

W21 using 6144 cores

& RMA B DGEMM & Sort

Original MPI Casper Thread (O) Thread (D)
2016-03-22 NUG 2016 - NERSC Users Group Annual Meetings 16

Summary

= MPI RMA communication is not truly one-sided

— Still need asynchronous progress
= Multi-/ Many-Core architectures (e.g., NERSC Edison)

— Number of cores is growing rapidly, some cores are not always busy
= Casper: a process-based asynchronous progress model

— Dedicating arbitrary number of cores to ghost processes

— Mapping window regions from user processes to ghost processes
— Redirecting all RMA SYNC. & operations to ghost processes

— Linking to various MPI implementation through PMPI transparent
redirection

= Improved NWChem performance up to 50% on Edison

2016-03-22 NUG 2016 - NERSC Users Group Annual Meetings

Argonne°

NATIONAL LABORATORY

Backup

A Challenge : Multiple Simultaneous Epochs (1)

= Simultaneous fence epochs on disjoint sets of processes sharing

the same ghost processes 2 user process subgroups

Fence with original MPI e N ~N
o i P2 P3 R | - node O
| 1 | I
Fence(winO) P ‘ ; —
; 4 Fence(win1) S JL)
1
,’ ; I Epoch 2
: @

| |
Epoch 1 :I _‘
Fence(win0) 4@ :

4

Fence(win1l)
Fence with Casper

. P2

= [

PO P1
I I
Fence(win0) —'.(/:/*
| |
Blocked ! @ ®
Waiting for Felrce(winl)lrﬁnish on IP1
I
|

2016-03-22

1
1
|.\
: -@
1
1
1
1 1
x DEADLOCK !

NUG 2016 - NERSC Users Group Annual Meetings 19

Fence(win1l)

| . Blocked
: L Waiting for Fence(win0) finish on P2

Solution for Multiple Simultaneous Fence Epochs

= Every user window creates an internal “global window”

= Translate to passive-target mode (lockall-flushall-unlockall)

Original code Casper translated code (on user processes)

Win_allocate Win_allocate
Lock_all (global win)

Fence(win0) Flush_all (global win) + Barrier(COMM_USER_WORLD) + Win_sync
PUT(P) PUT(G)

Fence(win) |:> Flush_all (global win) + Barrier(COMM_USER_WORLD) + Win_sync

[Performance issue 1] l' [Performance issue 3]
User hint
MPI_MODE_NOPRECEDE [Performance issue 2]
avoids it User hint
(NOSTORE & NOPUT & NOPRECEDE)
Win_free Unlock_all (global win) avoids it
Win_free

2016-03-22 NUG 2016 - NERSC Users Group Annual Meetings 20

