
A FACT-based Approach:
Making Machine Learning Collective Autotuning

Feasible on Exascale Systems
Michael Wilkins

Northwestern University
wilkins@u.northwestern.edu

Nikos Hardavellas
Northwestern University
nikos@northwestern.edu

Yanfei Guo
Argonne National Laboratory

yguo@anl.gov

Peter Dinda
Northwestern University

pdinda@northwestern.edu

Rajeev Thakur
Argonne National Laboratory

thakur@anl.gov

Min Si
Facebook

msi@fb.com

Abstract—According to recent performance analyses, MPI
collective operations make up a quarter of the execution time
on production systems. Machine learning (ML) autotuners use
supervised learning to select collective algorithms, significantly
improving collective performance. However, we observe two
barriers preventing their adoption over the default heuristic-
based autotuners. First, a user may find it difficult to compare
autotuners because we lack a methodology to quantify their per-
formance. We call this the performance quantification challenge.
Second, to obtain the advertised performance, ML model training
requires benchmark data from a vast majority of the feature
space. Collecting such data regularly on large scale systems
consumes far too much time and resources, and this will only
get worse with exascale systems. We refer to this as the training
data collection challenge.

To address these challenges, we contribute (1) a performance
evaluation framework to compare and improve collective au-
totuner designs and (2) the Feature scaling, Active learning,
Converge, Tune hyperparameters (FACT) approach, a three-part
methodology to minimize the training data collection time (and
thus maximize practicality at larger scale) without sacrificing
accuracy. In the methodology, we first preprocess feature and
output values based on domain knowledge. Then, we use active
learning to iteratively collect only necessary training data points.
Lastly, we perform hyperparameter tuning to further improve
model accuracy without any additional data. On a production
scale system, our methodology produces a model of equal
accuracy using 7.41x less training data collection time.

Keywords-MPI, collective communication, machine learning

I. INTRODUCTION

The Message Passing Interface (MPI) is the de-facto stan-
dard for communication within high-performance computing
(HPC) applications. We focus this work on MPICH, a popular
open-source implementation of MPI. As HPC systems and
programs grow at scale, communication speed lags behind. In
modern production systems, 50% of execution time is spent on
MPI, not actual computation [?]. We expect communication
overhead will become an even larger bottleneck in future
(exascale) machines.

Collective operations are one of the most commonly used
primitives in MPI, and they account for over half of MPI’s
overhead on production systems [?]. Collectives are a powerful
abstraction because they allow programmers to specify the
communication pattern of entire groups of processes in a single
command. Unlike point-to-point communication, this higher-
level specification conceals the actual communication pattern
from the user, thus creating uncertainty in their performance.
MPI implementations include multiple algorithms for the same
collective. The best algorithm for a given collective is highly
dependent on the situation, and using the wrong algorithm can
significantly hinder performance.

Collective performance is influenced by many factors. For
example, there are programmatic values such as message size,
number of processes, and number of processes per node. In
addition, a multitude of other factors exist (e.g., hardware
performance, network design, library versions, etc.). It is
exceptionally difficult for a developer to consider all seen and
unseen factors and pick the right collective implementation for
their use case. To address this challenge, MPICH automates
collective algorithm selection using decade-old heuristics. In
our studies, we found that an algorithm selected using the
default heuristics was 1.3x slower than the optimal choice on
average for our test system.1

There are many proposed methods to improve collective
algorithm selection. Much work has focused on analytical
models that can project algorithm performance [?], [?], [?].
These models show varying performance results, and they have
failed to gain widespread adoption because they are difficult
to implement, maintain, and expand for new algorithms. In
production, tools such as Intel’s MPITune and Open MPI’s
OPTO [?] use exhaustive benchmarking to automatically tune
algorithm selection. This strategy maximizes accuracy, but it
requires so much data (and thus machine time) that it can

1Bebop cluster at Argonne, 64 node subset of 664 nodes, Intel Xeon-E5-
2694v4 and 128GB of DDR4 memory per node



Fig. 1: System diagrams comparing our training methodology to the existing design

only be deployed to tune individual scenarios on large scale
systems.

Machine learning (ML) can improve upon exhaustive ap-
proaches by learning to predict scenarios that have not been
benchmarked [?], lessening the benchmarking overhead. ML
also has an inherent advantage over analytical models be-
cause it can learn patterns in the data caused by factors that
are difficult to model analytically, such as real-time and/or
machine-specific influences. While ML has the potential to
improve collective algorithm selection, the state-of-the-art ML
system [?] is not ready for production use. To begin, it is
difficult for a prospective user to compare ML autotuners and
other existing approaches because there is no framework to
quantify performance differences. We refer to this issue as the
performance quantification challenge. Also, we observe that
the state-of-the-art ML autotuner still requires an intractable
amount of benchmarking data for training. We refer to this
issue as the training data collection challenge. The evaluation
in [?] uses an ad-hoc method to generate training and test sets
with a small number of nodes (up to 48). The proposed method
is a strong proof of concept, but it does not generalize to
encompass the performance of an entire system. The standard
approach would collect data for the entire feature space, then
randomly split the data into training and test sets. This process
seems straightforward, but we estimate collecting this data for
our target system of 512 nodes takes approximately 75,000
core hours, which is over 6 days of machine time.2

In this paper, we address the performance quantification
and training data collection challenges. To better understand
autotuner performance, we define a framework of metrics
that summarize how a collective autotuner’s selections affect
application execution time. We apply this framework to the
state-of-the-art ML autotuner while decreasing the training set
size and show that the performance benefit of ML disappears
when using a realistic amount of data. To correct this problem,
we introduce Feature scaling, Active learning, Convergence,

2For machine learning-based autotuning of MPI collective communication,
the cost of data collection dominates the machine learning inferencing and
prediction costs, which are therefore both negligible.

Tune hyperparameters (FACT). FACT is a customized three-
part methodology that uses machine learning techniques (e.g.,
hyperparameter tuning) to minimize training data collection
time. First, we use expert knowledge to preprocess the fea-
ture and output values, which helps the ML model better
understand the proper trends in the data. Next, we iteratively
generate training data using active learning until the model
converges to near-optimal selection accuracy. Finally, we apply
an automated hyperparameter tuning tool that further im-
proves model accuracy without collecting additional data. Our
complete training methodology, contrasted with the current
method, is shown in Figure ??. We show that, on a production
scale system, our FACT-based approach produces a model of
equal accuracy using 7.41x less training data collection time
compared to existing approaches.

The following are the contributions of this paper:
• Metrics to evaluate collective autotuner performance;
• The FACT methodology, which includes custom prepro-

cessing, active learning, and hyperparameter tuning to
minimize the training data collection time;

• A simulated FACT-based autotuner that includes near
optimal performance while utilizing a practical amount
of training data.

II. BACKGROUND AND CHALLENGES

We now describe the concept of MPI collective autotuning
using machine learning, and its key challenges.

A. Collectives

Collectives work by abstracting away the point-to-point
primitives typically associated with message passing. For
example, consider a developer who wishes to send input data
from the root process to the rest of the processes in the
program. The collective primitive “broadcast” (MPI Bcast)
simplifies the program by performing the entire communica-
tion in a single function call. The ease of using collectives
becomes increasingly important as the number of processes
continues to grow. For this reason, we expect collectives will
be even more popular in future exascale applications.



TABLE I: Types of variables that affect collective algorithm
performance

Type of Variable Examples
Programmatic Message Size

Number of Processes (N)
Processes per Node (PPN)

Non-Programmatic Library Versions
Node Topology
CPU Performance
Network Bandwidth/Latency/Congestion

(a) Serial Implementation

(b) Binomial Tree Implementation
Fig. 2: Two possible implementations of MPI Bcast

Collectives are beneficial because they are easy to use,
but they risk deteriorating performance. The higher-level of
abstraction creates ambiguity regarding the actual implemen-
tation of the requested communication. For example, MPICH
includes 3–4 different algorithms for each primitive, which
perform differently depending on a wide array of factors.

We separate these factors into two categories shown in
Table ??. First are programmatic variables that are manually
set in software. The programmatic variables we consider are
message size, number of processes (N), and processes per node
(PPN). The other category is non-programmatic variables,
which are innate to the hardware and software outside the
target application. All of these factors, of both categories, must
be weighed when selecting the optimal algorithm for a given
collective; the wrong choice can result in a slowdown by a
factor of two or greater.

To illustrate the complexity of algorithm selection, we
continue our example using MPI Bcast. Figure ?? shows two
choices of implementations. Figure ??a is a serial broadcast:
root node 1 sends the message to nodes 2, 3, and 4 in order.
Figure ??b shows a binomial tree implementation where child
nodes forward the message in parallel. In this case, node 2
can send the message to node 4 while node 1 sends the
message to node 3. It may seem like the tree algorithm is
always the superior choice. However, imagine a system with a
high-latency network. Using a non-blocking send, node 1 may
be able to push all of its messages into the network before
node 2 even receives the information. In this case, the serial
implementation could perform faster. Additionally, these are

not the only algorithm choices. For large message sizes, an
algorithm that performs a scatter followed by an allgather has
been shown to be superior [?]. Through this discussion, we
can see that this single choice alone requires an inordinate
amount of expert knowledge. In addition, many applications
are written to set programmatic values dynamically, making it
impossible for the developer to make the correct selection.
To address the challenge of collective algorithm selection,
autotuning is a natural solution.

B. Collective Autotuning with Machine Learning

The challenge of collective algorithm selection has inspired
many autotuner proposals, which we describe in more detail
in Section ??. Here, we discuss existing machine learning
approaches and their challenges. As a prerequisite, we adopt
the autotuner described in [?]. We create a machine learning
regression model for every algorithm of every collective.
We experimented with the most performant machine learn-
ing models from previous works (Random Forest, XGBoost,
GAM, KNN) and found that Random Forest worked best with
our data on our system. This choice is arbitrary, as others such
as XGBoost and K-Nearest Neighbors produce similar results.
The learners accept the 3 programmatic values (message size,
N, PPN) as input features. The output of the model is a
predicted execution time in microseconds. The goal of each
learner is to predict the execution time of its algorithm across
the entire feature space. To select an algorithm for a particular
feature set, we query the regression models for each algorithm
and select the one with the lowest predicted execution time.
This design has been shown to make accurate selections that
accelerate collectives. However, there are obstacles preventing
its use on production systems.

C. Unresolved Challenges

Performance quantification challenge: The researchers
in [?] evaluate their work by benchmarking every algorithm
for their test data points. They use this data to simulate the
performance of selections by the MPI library’s default method,
their ML autotuner, and an oracle that always selects the
best algorithm. They show sometimes significant (1.3-1.5x)
speedup over the default selections. However, they do not
comprehensively compare to the oracle. The omission of quan-
titative data makes comparisons with other autotuners more
difficult. In addition, average speedup does not paint the whole
picture with respect to applications. For example, programs use
only a small fraction of the feature space. Average speedup
could cover the weaknesses of a high-variation autotuner,
which makes some very good selections and some very bad
selections. If an unlucky application only uses scenarios with
bad selections, they will not gain the promised speedup. This
evaluation works well as a proof of concept, but there are
flaws when considering production applications. We provide
an evaluation framework in Section ?? that includes new
metrics to better measure autotuner performance and its effect
on applications.



TABLE II: Metrics to quantify collective algorithm autotuner
performance

Metric Definition Range of Values

R2Score
General statistic describing how
well the model fits the data

[0,1] (closer to 1
is better)

Average Selected
Algorithm
Slowdown
(Average
Slowdown)

Slowdown of the selected al-
gorithm compared to the op-
timal/oracle algorithm averaged
across all feature sets

[1,∞] (closer to
1 is better)

Classification
Accuracy

Proportion of feature sets where
the ML model accurately pre-
dicts the fastest algorithm

[0,1] (closer to 1
is better)

Significant Mis-
take Proportion

Proportion of feature sets where
the predicted algorithm is more
than 10% slower than the fastest
algorithm

[0,1] (closer to 0
is better)

Training data collection challenge: Previous work used
an ad-hoc method to create training and testing datasets on
systems of up to 48 nodes. Obviously, modern and future HPC
hardware have many more nodes, and attempting to replicate
the custom data collection methods from the previous work
would be completely intractable. In this paper, we use a 512-
node system and limit our tests to power-of-2 feature values.
The common strategy used in ML is to measure the entire
feature space and then randomly split the data for training
and testing. For our large scale experiments, we collected this
data for one of the most popular collectives (MPI Bcast), and
we estimate that doing so for all 12 standard (non-variable,
blocking) collective operations would take 75,000 core hours
(over 6 days of machine time). For exascale machines, this
number would be significantly larger. In a production system,
training would have to be repeated regularly to account for
changes in non-programmatic variables, multiplying the true
cost of training data collection. We present the FACT method-
ology in Section ?? that minimizes the training data collection
time, making it more feasible on exascale machines.

III. QUANTIFYING PERFORMANCE

To address the performance quantification problem, we
propose the set of metrics in Table ??. In this section, we
explain the importance of each metric. We then use them to
re-analyze the performance of the existing work and illustrate
the training data collection problem.

A. Metrics

We believe each metric encapsulates an important dimen-
sion of autotuner performance. First is R2Score, a generic
value that represents ML model fitness. An R2Score close to
one means the individual regression models capture the trends
in the dataset. This metric is useful because it indicates how
the model may perform on untested scenarios or more difficult
areas of the feature space.

The most commonly used metric is Average Selected Al-
gorithm Slowdown, or Average Slowdown for short. Average
Slowdown represents the expected inefficiency of the auto-
tuner’s selections compared to optimal. This metric is most
useful when making a comparison between autotuners because

it represents the performance of selected collective algorithms
across the entire feature space.

The next metric is Classification Accuracy, which represents
the chance that a selection will be the optimal algorithm. This
metric is useful to measure model performance in the presence
of outliers. For example, a model may perform very poorly
for edge cases that go unused in applications. This model
would have a poor Average Slowdown, but the Classification
Accuracy would more fairly represent its high performance.

Lastly, we include Significant Mistake Proportion to rep-
resent a chance that a selected algorithm will be significantly
(> 10%) slower than the optimal selection. Significant Mistake
Proportion is the best statistic to decide whether an autotuner
is “good enough” for users because it shows the chance a se-
lected algorithm will perform noticeably worse than it should.
Because applications only use a small fraction of the feature
space, a small Significant Mistake Proportion guarantees that
they will see near-optimal performance from the autotuner. It
is important to note that 10% is an arbitrary value and can
easily be changed.

The metrics included in Table ?? paint a fuller picture of
autotuner performance. We feel it is important to address the
most obvious omission: Average Speedup. Average Speedup
is the predominant metric used in existing works because
it shows how much better an autotuner’s selections perform
compared to a library’s default selection mechanism. We
disregard it because, at this point, the poor performance of
default selections is a well-known fact and beating them is no
longer interesting. Moreover, default selection is much better
on some hardware systems than others. Attempting to compare
autotuners from separate sources based on Average Speedup is
pointless because it depends more on the difference in default
performance. Instead, our metrics should be applied separately
to an autotuner and the default and then compared.

B. Previous Work Evaluation

To illustrate the usefulness of our metric set, we re-
implemented the existing work in [?]. We exhaustively bench-
marked the standard collectives for all power of two feature
values up to 64 nodes, 32 process per node, and 1 MB
messages. We selected 64 nodes because it is the closest power
of two greater than the 48 nodes used for evaluation in [?].
We trained the ML autotuner using randomly selected training
data. The test set includes all of the data points we collected.
We used the RandomForestRegressor from the scikit-learn
package [?] as our ML model. Because we benchmarked every
algorithm in MPICH for every feature set, we know which
algorithm is optimal in every scenario. We then calculated
our metrics using the autotuner’s selections and the optimal
selections. For comparison, we also simulated the selections
MPICH would make by default and found an Average Slow-
down of 1.3.3

We performed these experiments on the Bebop cluster at
Argonne National Laboratory. We used a 64-node subset of

3Note that this means that there is headroom to improve on the MPICH
selections and speed up collectives by 23.1%.



Size of Training Set

St
at

is
tic

 V
al

ue
 (U

ni
t V

ar
ie

s)

0.00

0.25

0.50

0.75

1.00

1.25

0%25%50%75%100%

R² Score Classification Accuracy
Average Slowdown Significant Mistake Proportion

Fig. 3: State-of-the-art performance as a function of training
set constriction.

the 664 standard nodes. Each node contains an Intel Xeon-E5-
2694v4 with 36 cores (we use up to 32 cores) and 128GB of
DDR4 memory. The results of our evaluation are summarized
in Figure ??. We repeated the experiment with smaller training
sets to understand how the ML autotuner performs when we
train it with more realistic amounts of data. The left side of
the graph confirms the results from the previous work: the ML
autotuner performs exceptionally well with copious training
data. With an Average Slowdown near 1 and a Significant
Mistake Proportion near 0, applications would enjoy near
optimal collective performance. However, the picture becomes
increasingly tainted as we move to the right in the table. The
results stay stable for 50%, steadily deteriorate at 20/10%, and
completely collapse at 1%. 10% is the upper limit of what may
be feasible on a larger scale system (1.82 machine hours, see
Figure ??). With 10% of the feature space for training, an
Average Slowdown of 1.10 is substantially suboptimal, and a
0.12 Significant Mistake Proportion means many applications
would see noticeable performance deterioration.

We conclude that when trained with a realistically sized
training set, the state of the art provides far less practical value.
These results showcase the training data collection problem.

IV. MINIMIZING THE TRAINING SET

To address the training data collection problem, we propose
the FACT methodology. Here, we describe the three compo-
nents of FACT. We conclude the section by integrating each
segment to create the training methodology in Figure ??.

A. Feature Scaling

Data preprocessing is a ubiquitous step in machine learning
applications. Preprocessing allows the developer to use domain
knowledge to help expose data patterns to the ML models,
greatly improving model accuracy. More specifically, the de-
veloper processes the data to eliminate anomalies that may
mislead the learner. One of the most common preprocessing
steps is feature scaling. Feature scaling is vital for collective
autotuners because some regression models typically treat
larger feature values as more important by construction. In
our case, message size has a much bigger range than number

TABLE III: Feature ranges before and after scaling
Range Scaled Range

N [1,512] [1,10]
PPN [1,32] [1,6]

MSG SIZE [1, 1MB] [1,21]

of nodes or processes per node, but we want the model to treat
them all equally.

To reduce our feature ranges equitably, we take advantage of
our assumption that all features values must be powers of two.
Therefore, a log2 scaler is the obvious solution. We then add
one to avoid feature values of zero, which are also known to
confuse some models. Through our feature scaling approach,
their ranges become much more similar. We summarize the
ranges before and after scaling in Table ??.

Scaling the input values has a natural solution, but the
output values present a more complicated case. To begin, we
observe that the range of output values is quite large, from a
few microseconds for small inputs to a full second or more
for large inputs. In this scenario, a regression model may
treat outputs for small feature values as essentially the same.
However, our metrics normalize the output values for each
feature set to the optimal algorithm. A difference of a couple
of microseconds may be a significant slowdown/speedup for
small feature values, and we need to make sure the model
maintains that information.

The most common approaches for scaling are standardiza-
tion and normalization. In short, standardization assumes the
data fits a normal distribution and rescales it to a mean of 0 and
a standard deviation of 1. Normalization is a uniform scaling
technique that compresses the data into the range [0,1] without
affecting the shape of its distribution. Another approach to
consider is copying the metrics and scaling each output to
the value of the fastest algorithm. We refer to this technique
as algorithm scaling. Finally, we could add a log10 scaler to
algorithm scaling to match the scaling pattern already applied
to the inputs.

To evaluate our options, we repeat the experiments from
Figure ?? with input scaling and each of the output scaling op-
tions applied. The results are shown in Figure ??. To summa-
rize, our custom solution applying log10 with algorithm scaling
outperforms the competitors. To understand why, we discuss
the pitfalls of each option. Standardization performs poorly
because it assumes that the data fits a normal distribution,
which is not true for our data set. Normalization fails because
our input scaling complicates the input-output relationship by
artificially introducing an exponential component, and normal-
ization passes this complexity on to the ML model. Given the
weaknesses of the other preprocessing schemes, our custom
solution using algorithm scaling with an additional log10 scaler
is the clear winner. We believe it performs well because it
scales the output to make relative differences in performance
more important, and it also eliminates the exponential relation
introduced by our input scaling technique.

By combining our custom feature scaling techniques, we
observe a significant improvement in model performance.
Figure ?? compares our preprocessing to the original solution,



Size of Training Set (% of Feature Space)

A
ve

ra
ge

 S
lo

w
do

w
n

1.0

1.1

1.2

1.3

1.4

20% 10% 1%

None Normalization Standardization
Algorithm Scaling Alg. Scaling w/ Log

Fig. 4: Effects of different preprocessing techniques on Aver-
age Slowdown of resulting selection as a function of training
set constriction. Alg. Scaling w/ Log performs the best for
every training set size.

R² Score

Classification 
Accuracy

Average 
Slowdown

Significant 
Mistake 

0.00 0.25 0.50 0.75 1.00 1.25

Without Preprocessing With Preprocessing

Fig. 5: Effect of using our custom preprocessing technique.
The resulting model sees significant improvement across all
metrics.

which did not preprocess the data. We observe improvements
across all metrics in Figure ??. With a feasible amount of
training data (1% of the feature set), Average Slowdown de-
creases by 35.7%. Meanwhile, Significant Mistake Proportion
decreases by 14%. Interestingly, Classification Accuracy only
sees a relatively modest uplift (4.3%). By considering the
trends across statistics, we can conclude that our preprocessing
improves the model not by making more correct selections, but
by making smaller mistakes when it does miss-select.

B. Active Learning

Active learning is a type of machine learning where the
learner interactively queries the data set [?]. It is an iterative
process that begins with a set of unlabeled data. In each itera-
tion, the learner chooses data points to be labeled by an oracle
and adds them to its training set. Then the process repeats,
and the model selects new points. Training continues until the
model accuracy converges or a time limit is reached. Active
learning is typically used for ML applications where data
labeling is a challenging or time consuming task. Examples
typically include situations that require human intervention
(e.g., text/speech/image recognition), but the same description

applies to the training data collection problem.
For point selection, we use the most common strategy:

uncertainty sampling [?]. This algorithm queries data points
that it is most uncertain how to label. We use a surrogate model
[?] to represent the distribution we are attempting to learn. The
purpose of the surrogate model is to fit the distribution and
report features values at which it is most uncertain.

To use active learning to train a collective autotuner, we
specify an unlabeled data space using our input features and
their scaled ranges. During each iteration, we look up the
execution times of the chosen points using our exhaustive
benchmark results to simulate data collection. After each
iteration, we test model accuracy to check if we have met
the convergence criteria. This threshold is set by the user ac-
cording to their preferences. Example criteria include Average
Slowdown below 1.03 or Significant Mistake Proportion below
.05.

C. Hyperparameter Tuning

Hyperparameter tuning is a process where the parameters of
the learning model (hyperparameters) are optimized. All of the
most common learners have many hyperparameters, and using
the optimal values can greatly improve model accuracy. For
example, hyperparameters of the random forest model used in
this work include the number of decision trees and the max
depth of the trees.

In theory, hyperparameter tuning should be performed every
time we train our regression models, so as to maximize the
accuracy we can gain from the data collected. However, similar
to the data set collection problem we are attempting to solve,
searching the hyperparameter space is time consuming. To
perform hyperparameter tuning during our active learning
iterations before testing for convergence, we would have to
pause data collection while we retrain the model with many
combinations of hyperparameter values. In our experience,
we found that collecting more data improved model accuracy
far quicker than hyperparameter tuning. For this reason, we
include hyperparameter tuning as a postprocessing step in our
methodology. This way, it can be performed offline or on
a single node, not expending the data collection resources.
During active learning, we use fixed hyperparameter values
that are derived from previous offline tunings. Hyperparameter
tuning is then an optional step to squeeze the last bit of
accuracy out of the model after data collection. This step
is most valuable when the user only has a fixed amount of
time to collect training data. In this case, the active learning
process may not converge, resulting in inaccurate models.
Hyperparameter tuning can bridge the gap and produce a
model with converged-level accuracy. It is through this lens
we evaluate hyperparameter tuning in Section ??.

D. Implementation

Our FACT implementation integrates the main three ideas
from this section.

We support data collection using both the Ohio State Uni-
versity (OSU) microbenchmark suite [?] and the ReproMPI



benchmark suite [?]. The OSU benchmarks are a widely
accepted suite for benchmarking MPI collectives, and they
are the benchmarks we use in our evaluation. Once the data
is collected, we preprocess the data and use it to train the
RandomForestRegressor included in the scikit-learn Python
package [?].

For active learning, we deploy a special instance of the
DeepHyper tool [?], [?]. DeepHyper is primarily an automatic
hyperparameter tuning tool. It works by iterating through
hyperparameter configurations, training an underlying (surro-
gate) model. The surrogate model maps the hyperparameter
configurations to a result statistic defined by the user (e.g.,
classification accuracy or R2 score). DeepHyper balances two
modes: exploration and exploitation. During the exploration
phase, it queries the surrogate for the hyperparameter values
with the most uncertainty. It then trains the target model with
those values, tests its performance based on the user-defined
metric, and uses the results to retrain the surrogate model. The
“exploitation” phase then uses the surrogate model to predict
which hyperparameter values will maximize the performance
of the target model. Figure ?? illustrates DeepHyper’s inner
workings.

We observe that the exploration phase of DeepHyper is very
similar to the active learning process. We map our problem
onto DeepHyper’s framework as follows:

• We set DeepHyper’s β value to ∞, which forces Deep-
Hyper to always stay in exploration mode.

• We define the performance criteria as the execution time
of the collective algorithm.

• We specify our input features (N, PPN, message size) as
the hyperparameters for DeepHyper to optimize.

• To train the target model, we instruct DeepHyper to run
the selected benchmark suite and report the execution
time.

By manipulating DeepHyper, we implement our active learn-
ing methods with much less development effort than an ad-hoc
approach.

For hyperparameter tuning, we apply DeepHyper for its
intended purpose. We tune the following hyperparameters for
the random forest model: number of trees, split criterion, max
tree depth, and minimum number of samples to split a node.

Currently, our data collection and machine learning tech-
niques are separate. For now, simulate the iterative process of
collecting data and retraining by looking up the benchmark
results from our previously collected exhaustive results.

V. EVALUATION

In this section, we compare our implementation’s perfor-
mance with the performance of the existing work. Then, we
use a much larger evaluation platform to show the benefits
of the FACT methodology at scale. By reducing the data
collection time, especially on larger scale machines, FACT
makes ML-based collective algorithm autotuner more feasible
on exascale systems.

Fig. 6: DeepHyper System Diagram [?]

Size of Training Set

St
at

is
tic

 V
al

ue
 (U

ni
t V

ar
ie

s)

0.00

0.25

0.50

0.75

1.00

1.25

0%25%50%75%100%

R² Score Classification Accuracy
Average Slowdown Significant Mistake Proportion

Fig. 7: FACT-based implementation performance. A FACT-
based approach greatly improves autotuner performance with
smaller training sets.

A. Existing Work Comparison

For comparison, we recreated Figure ?? using our FACT
implementation. Again, we used a 64 node subset of the
Argonne Bebop cluster, each containing an Intel Xeon-E5-
2694v4 with 36 cores (we use up to 32 cores) and 128GB of
DDR4 memory. The result is shown in Figure ??.

Given the exact same exhaustive dataset, the FACT-based
approach greatly improves performance with smaller training
sets. For training sets between 50% and 1% of the feature
space, Average Slowdown decreased by 33-68% compared the
previous state of the art. Classification Accuracy (3-13%) and
Significant Mistake Proportion (32-55%) also saw substantial
improvements.

By improving autotuner performance with small training
sets, FACT minimizes data collection time. As a prerequisite,
we apply our previous example convergence criteria. We
consider the model ”converged” if Average Slowdown is below
1.03 and Significant Mistake Proportion is below .05 The
FACT-based approach reaches the criteria with a training set
of roughly 10% of the feature space, while the existing work
requires roughly 50% of the feature space. It takes 25.8
machine hours to collect the 50%, randomly selected training
set. The 10%, active learning training set takes 3.76 machine



3.674

2.581

0.970

0.200

0.036

3.629

1.758

0.690

0.375

0.005

Data Collection Time (Machine Hours)

Si
ze

 o
f T

ra
in

in
g 

Se
t (

%
 o

f F
ea

tu
re

 S
pa

ce
)

80%

50%

20%

10%

1%

0.000 1.000 2.000 3.000 4.000

Random Selection FACT

Fig. 8: 64 Node Data Collection Time for All Collectives.
Training sets with green labels result in ML models that meet
the convergence criteria, while those with red labels do not.
On average, FACT reduced data collection time by an average
of 1.14x for training sets of the same size.

hours to collect. The 7.41x reduction is more than expected
based on the set size decrease (5x).

Active learning improves data collection time even more
than the training set size suggests because it is naturally biased
towards smaller feature values, which take less time to collect.
Feature sets with smaller values have more variation. It follows
that the surrogate model assigns greater uncertainty values in
this range, therefore choosing these points instead of larger
feature values. This effect is even greater with the smallest
training sets. When both methods use 1% of the feature space,
the active learner collects its data in 7.2x less time (.05 hours
compared to .36 hours). Full results for data collection time
are shown in Figure ??.

B. Towards Exascale Systems
To understand how our training time minimization tech-

niques scale with machine size, we also apply our implementa-
tion to a larger scale test system. We used a 512-node subset of
the 4,392 node Theta supercomputer at Argonne. Each node
is comprised of an Intel Xeon Phi 7230 with 64 cores (we
again use up to 32 cores) and 192 GB of DDR4 memory. At
larger scale, it is impractical to collect exhaustive data for all
collectives as we did in Section ??. We instead collect data
for one of the most popular collectives: MPI Bcast [?].

Using our large scale MPI Bcast data, we plotted the data
collection time for each training set size in Figure ??. Note that
this figure only shows the data collection time for MPI Bcast,
while Figure ?? shows the data collection time for all standard,
non-blocking collectives. We use MPI Bcast’s increase in data
collection time from 64 to 512 nodes times cumulative results
up to 64 nodes on Theta to calculate the machine/core hour
estimates in the introduction.

On the 512 node production scale machine, the benefits
of FACT are amplified. Assuming the convergence criteria

8.11

6.01

2.87

1.82

0.09

7.80

4.80

1.73

0.88

0.09

Data Collection Time (Machine Hours)

Si
ze

 o
f T

ra
in

in
g 

Se
t (

%
 o

f F
ea

tu
re

 S
pa

ce
)

80%

50%

20%

10%

1%

0.00 2.00 4.00 6.00 8.00 10.00

Random Selection FACT

Fig. 9: 512 Node Data Collection Time for MPI Bcast.
Training sets with green labels result in ML models that meet
the convergence criteria, while those with red labels do not.
On average, FACT reduced data collection time by an average
of 1.31x for training sets of the same size.

are met with the same amounts of data as the previous
experiment4, FACT requires 6.8x less training time (6.01 hours
to .88 hours). Even on larger systems, FACT continues to
greatly decrease data collection time.

C. Hyperparameter Tuning

To understand the benefits of hyperparameter tuning, again
consider the scenario where the user does not have enough
machine time to generate a converged model. For this experi-
ment, we state our convergence criteria to be when the model
has an average slowdown less than 1.02.

We represent the convergence in Figure ??, which shows
how Average Slowdown decreases as the active learner adds
points to the training set. This data is generated from
MPI Reduce Scatter from our 64 node testcase. We chose
MPI Reduce Scatter because it is one of the slowest collective
operations to converge, making it one of the most likely to
require hyperparameter tuning. The first line indicates where
the user ran out of data collection time (22.2 machine minutes),
and the second line represents the model convergence point if
they had been able to continue training (36 machine minutes).

We run DeepHyper’s hyperparameter tuning routine to au-
tomatically generate a better random forest configuration for
our training set that minimizes average slowdown. The results
of the most important iterations are shown in Table ??. We see
that the tuning process generates a set of hyperparameters that
produce an ML model that reduces the average slowdown by
2x, getting under the convergence target in less than two-thirds
the data collection time.

4For large scale job allocations, the amount of data required to meet the
convergence criteria varies widely, both across different jobs and over time
within the same job. For more details on the difficulties of microbenchmarking
MPI, see Hunold et al [?]. The best way to fully measure performance on
large scale jobs is through applications, which we leave as future work.



R
an

 o
ut

 o
f t

im
e 

(2
2.

2)

C
on

ve
rg

en
ce

 P
oi

nt
 (3

6.
00

)

Data Collection Time (Machine Minutes)

A
ve

ra
ge

 S
lo

w
do

w
n

1.00

1.05

1.10

1.15

1.20

0 10 20 30

Fig. 10: Example Convergence Graph. The user runs out of
data collection time when they are only halfway to conver-
gence.

TABLE IV: Hyperparameter Tuning Iterations
Iteration Average Slowdown

1 1.04
2 1.057
... ...
20 1.019

Note that for this experiment, DeepHyper ran for around 15
minutes to find performant hyperparameter values. Attempting
to introduce this process between every data point we collect
would increase the overall time by 15 minutes times the
number of training points collected. In the scenario with lim-
ited collection time, attempting to run hyperparameter tuning
during active learning would inhibit so much data collection
that we would never get enough data to create a converged
model, regardless of the hyperparameter values.

VI. RELATED WORK

This paper builds upon the ideas presented by Hunold et
al. [?], [?], who present the idea of using machine learning to
autotune collective algorithms. They prove that basic machine
learning models without hyperparameter tuning can accurately
select collective algorithms. The work in [?] goes further,
building an autotuner prototype using basic ML models with-
out hyperparameter tuning. Their paper includes an ad hoc
testing methodology that shows an ML autotuner works well
on allocations up to 48 nodes on larger supercomputers. We
scale to much larger node counts while minimizing the data
collection time using the FACT methodology.

There are many previous proposals that use non-ML meth-
ods to autotune collective algorithms. Some work focuses on
modeling collective algorithm performance using analytical
models [?]. Early autotuners use heuristics and/or analytic
models to select collective algorithms and tune their parame-
ters [?], [?], [?], [?]. A more recent study by Luo et al. used
a hierarchical model to optimize algorithms [?]. They create
tasks (e.g., a portion of a collective algorithm) using swappable
submodules. The submodules exist at lower-level hardware
layers, making it easier to support heterogeneous hardware.
Old and new analytical autotuners suffer from similar issues:
high implementation, maintenance, and expansion costs that

prevent them from appearing in production-ready MPI imple-
mentations. Machine learning, on the other hand, handles the
complexity of algorithm selection internally. The black box
nature of machine learners make them much easier to use
and expand to fit new algorithms. Our work and previous
ML studies have confirmed that ML models are capable of
accurately predicting the performance of collective algorithms
without exposing the user or developer to undue burden.

VII. FUTURE WORK

The work presented in this paper addresses the most press-
ing challenges preventing ML autotuners from being adopted
in production. However, there are still existing challenges that
we discuss here.

A. Effect on Application Performance

Collective performance is important to applications because
it constitutes a large portion of the total execution time [?].
However, it is unclear exactly how much accelerating col-
lectives would accelerate an entire application. An example
complication is communication-compute overlap. If each node
can make progress while waiting for a collective operation
to finish, improving the collective latency may not affect the
overall application speed in a meaningful way.

In Section ??, we propose a set of metrics that better capture
collective performance and its potential effects on applications.
To fully understand the correlation between our metrics and
application performance, we need to test autotuner collective
algorithm selections in the context of real applications on large
scale systems. We require a full autotuner prototype to perform
these experiments.

B. Building a Complete Autotuner

Our contributions make an ML autotuner more feasible on
a production system. However, we do not actually build a
complete autotuning system in this paper. Our current proto-
type simulates the active learning process (see Section ??).
As a next step, we plan to build a complete prototype that
implements our ideas. For this prototype to be useful, we must
address additional challenges introduced by our design.

Non-power-of-two: A major assumption we make in
this paper is that all feature values (number of nodes, etc.)
are powers of two. In practice, these values do not always
meet this assumption. Number of nodes is the most common
deviant. Many large scale machines (e.g., our test platform) do
not have a power-of-two number of nodes. Also, these systems
prioritize utilization in their job scheduling algorithms. For
these reasons, non-power-of-two jobs are commonly promoted
by the schedulers because they help fill every node.

To address non-power-of-two feature values, we plan to
include non-power-of-two situations in the active learning
process. By occasionally sampling non-power-of-two feature
values with high uncertainty, we can accurately predict both
power-of-two and non-power-of-two feature values without
substantially increasing data collection time.



Convergence: In this paper, we use metrics measured
across the exhaustive dataset to detect when a model has
converged. In practice, we will not have a complete set of
data to compare against. Instead, we will only have the points
collected for training, which we cannot reuse for testing.

We need a new way to detect convergence in an active
learning autotuner. We plan to find a correlation between
the convergence metrics we currently use and the uncertainty
values of our active learner (see Section ??). DeepHyper’s
implementation does not expose these values to the user. In
addition, DeepHyper runs for a fixed number of iterations, not
until a criteria is met. To overcome these challenges, we will
develop our own custom active learning tool. With a custom
implementation, we can continue active learning until a level
of certainty is met. We can verify the correlation by doing
active learning first on a new system then collecting exhaustive
test data to double-check accuracy.

After solving the non-power-of-two and convergence chal-
lenges, we will build a production-ready ML autotuner that
minimizes data collection time.

C. Practicality over Default Approaches

With a complete autotuner in place, a 7.41x reduction to the
estimated 6 days of data collection time is still almost a day of
machine time. Considering training data must be recollected
as frequently as every job allocation, FACT-based collective
autotuning is only practical for longer-running jobs. We plan
to continue addressing the issue through strategies such as
parallelized data collection. In the context of real applications,
we plan to analyze whether the improved performance makes
up for the data collection overhead.

VIII. CONCLUSIONS

We presented an evaluation framework for MPI collective
autotuners. We use this framework to showcase the FACT
approach. FACT can generate an ML-based autotuner with
performance equal to the state of the art. FACT maintains per-
formance while minimizing the training data collection time,
making ML-based autotuners more feasible on exascale su-
percomputers. Moving forward, we believe a complete FACT-
based autotuner will maximize collective performance with
minimal data collection, while also minimizing maintenance
and expansion costs.

IX. ACKNOWLEDGEMENTS

We would like to acknowledge the team behind DeepHyper,
specifically Prasanna Balaprakash and Jaehoon Koo, for their
assistance configuring DeepHyper for our experiments.

This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National
Nuclear Security Administration, and by the U.S. Depart-
ment of Energy, Office of Science, under Contract DE-AC02-
06CH11357.

We acknowledge the computing resources provided on
Bebop, a high-performance computing cluster operated by the

Laboratory Computing Resource Center at Argonne National
Laboratory.

This research used resources of the Argonne Leadership
Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC02-06CH11357.


