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ABSTRACT
The two most common parallel execution models for many-core
CPUs today are multiprocess (e.g., MPI) and multithread (e.g., Open-
MP). The multiprocess model allows each process to own a private
address space, although processes can explicitly allocate shared-
memory regions. The multithreaded model shares all address space
by default, although threads can explicitly move data to thread-
private storage. In this paper, we present a third model called
process-in-process (PiP), where multiple processes are mapped into
a single virtual address space. Thus, each process still owns its
process-private storage (like the multiprocess model) but can di-
rectly access the private storage of other processes in the same
virtual address space (like the multithread model).

The idea of address-space sharing between multiple processes
itself is not new. What makes PiP unique, however, is that its design
is completely in user space, making it a portable and practical
approach for large supercomputing systems where porting existing
OS-based techniques might be hard. The PiP library is compact
and is designed for integrating with other runtime systems such
as MPI and OpenMP as a portable low-level support for boosting
communication performance in HPC applications. We showcase
the uniqueness of the PiP environment through both a variety of
parallel runtime optimizations and direct use in a data analysis
application. We evaluate PiP on several platforms including two
high-ranking supercomputers, and we measure and analyze the
performance of PiP by using a variety of micro- and macrokernels,
a proxy application, and a data analysis application.
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1 INTRODUCTION
Multicore and many-core architectures are promising solutions for
modern high-performance computing (HPC) systems. Two parallel
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execution models are widely used in HPC applications on such mas-
sively parallel systems: the multiprocess model and the multithread
model.

In the multiprocess model, the communication between execut-
ing processes on a node is limited by the operating system (OS),
such that one OS process cannot directly access the memory regions
owned by the other processes. Thus, the interprocess communica-
tion usually relies on the message-passing model (e.g., MPI) where
additional data copy cannot be avoided. This model is known to be
inefficient, however, especially when large numbers of processes
on a node are communicating with each other.

Memory-mapping mechanisms have been broadly studied in
HPC systems as an approach exploiting the capability of shared
memory. POSIX (System V IPC or UNIX) shared memory (shmem)
is the most portable and commonly used approach, which allows
multiple processes to map the same physical memory region onto
the virtual address space (VAS) of each process. However, this
mechanism requires every process to participate in the memory
region creation. Thus it cannot support any preallocated memory
regions or statically allocated data. The other widely used technique
is XPMEM [43], which is a Linux kernel module that allows a
process to access the memory pages owned by the other processes.
XPMEM allows a process to arbitrarily expose any memory region
that it owns; other processes can then map the exposed memory
region onto their local VAS.

Interprocess communication using these memory-mapping tech-
niques can be achieved by using one of two approaches. In the first
approach, a shared-memory buffer is allocated at initialization time,
and any data movement between two processes is copied through
this buffer. POSIX shmem, for instance, is used with this approach.
In the second approach, the process that owns a memory region
can expose that memory region to other processes by using system
calls. Once the memory region is exposed, other processes can map
the exposed memory region into their VAS and then access it di-
rectly. XPMEM, for instance, enables this approach. While the latter
is more flexible in that it allows the runtime system to map user-
managed buffers onto different processes on the node dynamically,
a setup overhead is incurred for every memory mapping because it



has to acquire the memory setup in the OS kernel through expen-
sive system calls. Moreover, the memory-mapping approaches may
also suffer from noticeable page fault (PF) overhead during data
access because every process maintains a separate page table (PT)
and thus a mapped memory page can create as many PT entries as
the number of processes that access the page at the time of the first
touch, resulting in frequent PFs.

Intercore communication is more convenient and efficient in the
multithread model, where multiple threads share the same VAS.
Thus, any thread can easily access any data allocated in the VAS.
Moreover, accessing the shared-memory page by multiple threads
does not trigger frequent PFs because the PT belonging to the VAS
is also shared. However, race conditions between threads on shared
variables must be carefully handled by application or runtime de-
velopers. In fact, the contention overhead between multiple threads
still cannot be eliminated in most process-based runtime systems
such as MPI [1, 11, 16, 18] because of the MPI semantics limitation.

A third parallel execution model combines the best of both
worlds. In this model, each execution entity such as a process or
thread, denoted task for short, has its own variable set to reduce
the number of synchronizations, as in the multiprocess model, but
shares the same VAS, as in the multithread model. Thus, accessing
the data owned by another task becomes simple. Here variable
is the variable declared in a program and is accessed through its
name in a program. When multiple tasks share the same VAS, a
privatized variable having the same name on each task generates
a separate instance with a different address in the VAS. A priva-
tized variable, however, can also be accessed by other tasks if the
address of that variable is known. This model can be implemented
by using either a thread-based or an OS-based approach. In the
thread-based approach, the privatized variables can be declared to
be located in thread-local storage (TLS) supported by a language
system to reduce the synchronization overhead, based on support
from special preprocessor or compiler systems [9, 32, 40, 46]. In the
OS kernel-based approach, on the other hand, a special OS kernel or
modification based on an existing kernel is proposed to support the
sharing of VAS among processes [7, 35, 36]. Unfortunately, existing
solutions rely heavily on either a special programming language
system or OS kernel change, thus making their deployment on large
HPC systems harder.

This paper presents a novel approach to support the third exe-
cution model, named process-in-process (PiP). PiP allows multiple
parallel tasks to execute the same or different programs in a shared
VAS environment while maintaining privatized variable sets. The
PiP task does not follow the definition of conventional process
or thread. For instance, PiP tasks share the same VAS whereas
processes have isolated VAS; two PiP tasks can execute arbitrary
programs in parallel in the same VAS, whereas threads must be
derived from the same program. Moreover, a process or PiP task
always starts its execution from the main() function, but a thread
starts its execution from an arbitrary function. PiP defines a special
task called “root process” that owns the VAS and spawns multiple
tasks executing in the same VAS as of the root; hence the model
name “process-in-process.”

The fundamental idea of PiP is the unique combination of Position-
Independent Executables (PIE) [30] and the dlmopen() Glibc func-
tion, which ensures that a program binary, its dependencies, and

data can be loaded into the same VAS with different locations every
time the program is executed. Unlike the existing thread- or OS-
based approaches, PiP is amore portable and practical technique that
is implemented completely at the user level, thus being independent
of language systems and OS kernels.

We present the fundamental techniques of PiP and its design
for supporting the multiprocess (e.g., MPI) and multithread (e.g.
OpenMP) models in scientific programming. PiP aims to resolve
the essential performance bottlenecks in the parallel runtime as a
portable alternative to the traditional OS process or Pthread low-
level support. We showcase the benefits of PiP in three essential
HPC scenarios: (1) optimizing the shared-memory communication
in MPI runtime via VAS sharing, (2) resolving the MPI multithread-
ing overheads in the hybrid MPI+Threads model based on variable
privatization, and (3) utilizing the data-sharing technique with in
situ programming. We analyze the performance of PiP through a
variety of micro- and macrobenchmarks, a particle transport proxy
application, and a molecular dynamics application with in situ
analysis. To demonstrate the portability of PiP, we performed the
evaluations on four computing environments, including two HPC
systems ranked in the top 10 of the Top500 as of November 2017.

2 BACKGROUND AND RELATEDWORK
In this section, we give an overview of the available execution mod-
els with a focus on the support of memory-sharing and variable
privatization. Table 1 summarizes the default support of the multi-
process and multithread models and their variations that enable the
combined execution model. The memory-mapping techniques are
also included since they enable limited sharing between processes.
We define several terms below.
variable: A variable has an associated name. Stack (automatic)
variables are out of scope here because they ought to be privatized
and sharing stack variables is not recommended at all.
data: Data has no associated name and can be accessed only via a
pointer variable (e.g., malloc()ed or mmap()ed region).
shared: If a variable is shared, then the variable referred to by its
name in a program is the same variable having the same address
regardless of the number of tasks.
privatized: If a variable is privatized, then it has the same num-
ber of variable instances as the number of tasks derived from the
same program, and each instance belongs to a specific task. Race
conditions can be avoided when accessing on a privatized variable.
accessible: The accessible variable or data can be accessed by other
tasks by specifying its name or by load/store operations via a pointer
variable, respectively. A shared variable is accessible.

2.1 Multiprocess with Memory Mapping
As listed in Table 1, two memory-mapping techniques have been
widely used for data sharing in the multiprocess model. POSIX
shmem includes System-V IPC and UNIX shared mmap. It is a gen-
eral term to mmap() the memory pages owned by another process.
This technique allows newly allocated memory segments (i.e., data)
to be shared. However, a process cannot access statically allocated
variables of the other processes. Moreover, the setup cost for the
memory mapping is high.



Table 1: Summary of current techniques and PiP
VAS Variables Data Note

Multi-
Proc

(default)

not
shared

privatized,
inaccessible

inaccessible

POSIX
shmem accessible Only for newly allocated

regions

XPMEM privatized,
accessible accessible Linux kernel module

Third
Model

SMARTMAP

shared privatized,
accessible accessible

Kitten OS
PVAS Patched Linux kernel

PiP OS and language system
independent

MPC Compilers needed
Multi-
Thread (default) shared shared accessible

XPMEM is the other well-known approach. It was initially de-
veloped by SGI and is now available in Linux as a kernel module. It
allows processes to map arbitrarily memory regions (i.e., both data
and variables) owned by other processes. These mappings involve
costly system calls to the kernel module, however.

Inside the OS kernel, each process has a PT by which physical
memory pages and virtual memory pages are associated. Although
the memory-mapping approaches allow a process to access the
memory region of other processes, it must create a new PT entry
to access the region. The creation of new PT entries can result in
expensive PFs during data access.

2.2 Multiprocess with VAS Sharing
Two OS-based VAS-sharing techniques have been studied in the
multiprocess model. SMARTMAP is a built-in function of the Kitten
lightweight OS kernel [7] that exploits the PT structure of the
x86 architecture. PVAS provides functionality similar to that of
SMARTMAP, but it is implemented as a patched Linux kernel [35,
36].

Different from the memory-mapping approaches, a memory
region (both data and variables) can be seen by the other processes
without any additional setup in a shared VAS. Moreover, sharing a
VAS means sharing a PT. Thus, the aforementioned PF overhead
does not occur in VAS sharing because every memory page creates
its PT entry only once. The third benefit of VAS sharing is the
reduced memory consumption for PTs. The number of PT entries in
the memory-mapping approaches can grow as O (N 2), where N is
the number of processes in a node. When N is large on a many-core
CPU, the size of PT can be problematic. In contrast, VAS sharing
reduces the number of PT entries to O (N ).

Although the large page mechanisms in Linux (HugeTLB, Trans-
parent Huge Pages, etc.) can relax the issues of the PF overhead and
the total PT sizes, the utilization of large pages is limited in practice.
The reason is that (1) more memory may be consumed, (2) memory
utilization may be lowered further with NUMA-aware memory allo-
cation, (3) physical memory fragmentation may hinder application
performance because of page migration, and (4) users may become
stressed at having to expend more effort in programming.

2.3 Multithread with Variable Privatization
In the multithread model, threads share the same VAS by definition.
TOMPI [13], TMPI [39], AzequiaMPI [25], and MPC [32] studied
ways to optimizeMPI intranode communication based on the thread

model. Most MPI implementations are based on the process model.
When an MPI library is provided on top of the thread model where
all variables are shared, implementation of process private data
becomes the primary concern.

A compiler or preprocessor can convert statically allocated vari-
ables, which should be treated as private, that is, to locate variables
in TLS. Zheng et al. [46] reported on three implementation tech-
niques for localizing the shared data: (1) compiler transformation
enables each thread may have different variable instances, (2) each
thread has its own Global Offset Table (GOT) data and switch GOT
entries, and (3) the compiler adds the __thread storage class speci-
fier to those variables.

MPC is a thread-based language-processing system designed
for hybrid MPI and OpenMP programming. It consists of custom
compilers, linker, and runtime libraries; thus the maintenance is
costly. To support MPI programs, the compiler converts statically
allocated variables into TLS variables to make them private, and the
MPC runtime creates threads running as MPI processes. Each of the
threadsmay have child threads (e.g., OpenMP threads), and the child
threads may contain user-defined TLS variables. A hierarchical TLS
subsystem is designed to resolve the two kinds of TLS variables that
have different access scopes; however, it also introduces additional
overhead when accessing the TLS variables [9, 40].

Several issues commonly exist when integrating threads with
variable privatization. First, multiple threads created by a process
can load and execute only a single program. Thus, this approach
cannot handle scenarios that require co-execution of multiple pro-
grams (e.g., an in situ analysis program is attached to another
simulation program). Second, accessing TLS variables may incur
extra overhead depending on the CPU architecture and TLS imple-
mentation. Third, the implementations (e.g., MPC) may rely on a
special language-processing system; thus supporting another pro-
gramming language is difficult. More important, a process-based
program has to be recompiled in order to privatize variables. If
a dependent library is available only in binary form, the library
functions used by the program have to be thread-safe.

2.4 Others
The idea for the PiP implementation was inspired by a paper by
Morozov and Lukic [27], in which they showed that a PIE program
could be loaded into a process’s VAS by calling the dlopen() Glibc
function and could be executed by jumping into the main() func-
tion. In this way, an in situ program can be executed in the same
VAS with a simulation program. Although this approach can load
multiple programs in the same VAS, the variables are not privatized.
Thus, it cannot support an arbitrary number of tasks running in
the same VAS whether or not the loaded programs are the same.

The concept of user-level threads has been studied as the alter-
native to conventional OS-level threads [22, 29, 34, 41]. It allows
the user program to create a large number of lightweight threads
and manage the scheduling of these threads at user level. Unlike
user-level threads, PiP focuses on the portability of the VAS sharing
functionality; it makes no difference in the scheduling of execution
units compared with the conventional OS process or thread. That is,
PiP tasks are scheduled by the OS kernel and can be synchronized
by using, for example, pthread_mutex similar to OS-level threads.



3 DESIGN AND IMPLEMENTATION
In this section, we introduce the definition and design of the pro-
posed PiP VAS sharing model. We identify five design goals;
G1 Tasks have the same VAS by sharing the same PT.
G2 Each task has a privatized variable set so that the synchroniza-

tion overhead found in the multithread execution model can
be avoided.

G3 PiP requires no new kernel, no kernel patches, and no kernel
module.

G4 PiP must be programming language independent and require
no new language processing system.

G5 The upper-level runtime libraries (e.g., MPI) may have multiple
tasks derived from one or more different executable files.

The PiP execution model is simple, having only two types of
tasks.
(PiP) root process: A PiP root process can spawn PiP task(s) (see
below). Spawned PiP tasks are mapped into the same VAS as the
root process. The root programs can be regular binaries linked with
the PiP library.
PiP task: A spawned task by a root PiP process is called a PiP task.
PiP tasks having the same PiP root process share the same VAS
created by the root process.

3.1 Variable Privatization
Here, namespace means the set of variable names and function
names. Having a privatized variable set means that the variable
named var in a PiP task can be accessed by its name in the PiP
task. Different tasks derived from the same program have their
own variables named var. However, each variable is located at a
unique address. In this case, variables are privatized, so variable
privatization means each task has an independent namespace.

555555554000-555555556000 r-xp ... /PIP/test/basic
555555755000-555555756000 r--p ... /PIP/test/basic
555555756000-555555757000 rw-p ... /PIP/test/basic
555555757000-555555778000 rw-p ...  [heap]
7fffe8000000-7fffe8021000 rw-p ...
7fffe8021000-7fffec000000 ---p ...
7ffff0000000-7ffff0021000 rw-p ...
7ffff0021000-7ffff4000000 ---p ...
7ffff4b24000-7ffff4c24000 rw-p ...
7ffff4c24000-7ffff4c27000 r-xp ... /PIP/lib/libpip.so
7ffff4c27000-7ffff4e26000 ---p ... /PIP/lib/libpip.so
7ffff4e26000-7ffff4e27000 r--p ... /PIP/lib/libpip.so
7ffff4e27000-7ffff4e28000 rw-p ... /PIP/lib/libpip.so
7ffff4e28000-7ffff4e2a000 r-xp ... /PIP/test/basic
7ffff4e2a000-7ffff5029000 ---p ... /PIP/test/basic
7ffff5029000-7ffff502a000 r--p ... /PIP/test/basic
7ffff502a000-7ffff502b000 rw-p ... /PIP/test/basic
7ffff502b000-7ffff502e000 r-xp ... /PIP/lib/libpip.so
7ffff502e000-7ffff522d000 ---p ... /PIP/lib/libpip.so
7ffff522d000-7ffff522e000 r--p ... /PIP/lib/libpip.so
7ffff522e000-7ffff522f000 rw-p ... /PIP/lib/libpip.so
7ffff522f000-7ffff5231000 r-xp ... /PIP/test/basic
7ffff5231000-7ffff5430000 ---p ... /PIP/test/basic
7ffff5430000-7ffff5431000 r--p ... /PIP/test/basic
7ffff5431000-7ffff5432000 rw-p ... /PIP/test/basic
...
7ffff5a52000-7ffff5a56000 rw-p ...
...
7ffff5c6e000-7ffff5c72000 rw-p ...
7ffff5c72000-7ffff5e28000 r-xp ... /lib64/libc.so
7ffff5e28000-7ffff6028000 ---p ... /lib64/libc.so
7ffff6028000-7ffff602c000 r--p ... /lib64/libc.so
7ffff602c000-7ffff602e000 rw-p ... /lib64/libc.so

7ffff602e000-7ffff6033000 rw-p ...
7ffff6033000-7ffff61e9000 r-xp ... /lib64/libc.so
7ffff61e9000-7ffff63e9000 ---p ... /lib64/libc.so
7ffff63e9000-7ffff63ed000 r--p ... /lib64/libc.so
7ffff63ed000-7ffff63ef000 rw-p ... /lib64/libc.so
7ffff63ef000-7ffff63f4000 rw-p ...
7ffff63f4000-7ffff63f5000 ---p ...
7ffff63f5000-7ffff6bf5000 rw-p ... [stack:10641]
7ffff6bf5000-7ffff6bf6000 ---p ...
7ffff6bf6000-7ffff73f6000 rw-p ... [stack:10640]
7ffff73f6000-7ffff75ac000 r-xp ... /lib64/libc.so
7ffff75ac000-7ffff77ac000 ---p ... /lib64/libc.so
7ffff77ac000-7ffff77b0000 r--p ... /lib64/libc.so
7ffff77b0000-7ffff77b2000 rw-p ... /lib64/libc.so
7ffff77b2000-7ffff77b7000 rw-p ...
...
7ffff79cf000-7ffff79d3000 rw-p ...
7ffff79d3000-7ffff79d6000 r-xp ... /PIP/lib/libpip.so
7ffff79d6000-7ffff7bd5000 ---p ... /PIP/lib/libpip.so
7ffff7bd5000-7ffff7bd6000 r--p ... /PIP/lib/libpip.so
7ffff7bd6000-7ffff7bd7000 rw-p ... /PIP/lib/libpip.so
7ffff7ddb000-7ffff7dfc000 r-xp ... /lib64/ld.so
7ffff7edc000-7ffff7fe0000 rw-p ...
7ffff7ff7000-7ffff7ffa000 rw-p ...
7ffff7ffa000-7ffff7ffc000 r-xp ... [vdso]
7ffff7ffc000-7ffff7ffd000 r--p ... /lib64/ld.so
7ffff7ffd000-7ffff7ffe000 rw-p ... /lib64/ld.so
7ffff7ffe000-7ffff7fff000 rw-p ...
7ffffffde000-7ffffffff000 rw-p ... [stack]
ffffffffff600000-ffffffffff601000 r-xp ... [vsyscall]

Program

Glibc

Figure 1: Example of /proc/self/maps (partly omitted)

Fortunately, Glibc supports the dlmopen() function, which can
create a new namespace. By calling dlmopen() with the LM_ID_
NEWLM flag and a filename of a PIE file, the specified PIE program is
loaded with the privatized variable set. Thus, G2 can be achieved.
Figure 1 shows an example of /proc/<PID>/maps when a PiP root
spawns two PiP tasks. In this example, a PiP root and two PiP

tasks, three tasks in total, are derived from the same program
(/PIP/test/basic).

1 7ffff73f6000-7ffff75ac000 r-xp ... /usr/lib64/libc-2.17.so /* TEXT */
2 7ffff75ac000-7ffff77ac000 ---p ... /usr/lib64/libc-2.17.so /* (gap) */
3 7ffff77ac000-7ffff77b0000 r--p ... /usr/lib64/libc-2.17.so /* GOT */
4 7ffff77b0000-7ffff77b2000 rw-p ... /usr/lib64/libc-2.17.so /* DATA & BSS */

Figure 2: A set of libc-2.17.so segments in Figure 1

Figure 2 shows one set of Glibc segments extracted from Figure 1.
The first segment is the TEXT segment where program instructions
are stored. The second segment from the top is a gap, and nobody
can access this area. The third segment contains GOT, which is
essentially an array whose elements are the addresses of external
references. The fourth segment at the bottom is DATA& BSS, which
contains statically allocated variables defined in Glibc. As shown
in Figure 1, there are three tasks and three sets of dynamically
shared objects (DSOs). It indicates that each PiP task has its own
set of privatized variables for both the program and its dependent
libraries.

We note that the current implementation of dlmopen() can sup-
port only up to 16 namespaces—too small even with the conven-
tional multicore CPUs. This is an implementation issue. We there-
fore patched Glibc so that the current PiP can create up to 300 PiP
tasks. Still, since Glibc is a user-level library, this feature does not
ruin the PiP portability. Although we faced some other trivial Glibc
implementation issues, we succeeded in working around them in
the PiP library.

3.2 Loading Programs into the Same VAS
As described in the preceding section, PiP tasks are derived from PIE
programs so that they are loaded into the same VAS with different
locations. By using PIE, G1 and G5 can be achieved.

Today computer security is a big concern, and address space
layout randomization (ASLR) is one of the useful techniques. In
ASLR, address mapping of a process is randomized, and therefore
programs are compiled and linked as PIE. Furthermore, on many
recent operating systems such as Android, iOS, and Mac OSX [42],
non-PIE application programs are not accepted for security reasons.
Major Linux distributions are following the same road. Thus, PIE
has already started to become the de facto binary format.

3.3 Running with an OS Kernel Thread
We next run the loaded program with an OS kernel thread. If this
process can be done at the user level and independent from any
language-processing system,G3 andG4 can be achieved.We design
two execution modes in PiP.
Process Mode: In this mode, the OS kernel thread and its stack can
be created by calling the Linux clone() system call with CLONE_
VM1 and without the CLONE_THREAD2 flag setting. With the CLONE_
VM flag, the clone() system call creates an OS kernel thread to
run inside the VAS of the caller process. We reset the CLONE_FS,3

1If set, the calling process and the child process run in the same VAS.
2If set, a child task is created as a thread.
3If set, tasks share the same file system info.



/* --- Core Function --- */
/* 1. Initialize and return my task id, number of tasks, and the address
of an exported region on the root if specified. */
int pip_init (int *id, int *npips, void **root_exp, int opts);

/* 2. Finalize. */
int pip_fin (void);

/* 3. Spawn a PiP task with specified id; if PIP_PIPID_ANY is set,
then the library assigns the id and return the id value. */
int pip_spawn (char *filename, char **argv, char **envv, int coreno,

int *id, pip_spawnhook_t before, pip_spawnhook_t after,
void *hookarg);

/* --- Helper Function --- */
/* 4. Get the address of a global variable named nm on task id. */
int pip_get_addr (int id, const char *nm, void **ptr);

/* 5. Initialize the barrier synchronization structure for n participants. */
void pip_barrier_init (pip_barrier_t *barp, int n);

/* 6. Wait on a barrier in a busy-wait way. */
void pip_barrier_wait (pip_barrier_t *barp);

Figure 3: PiP API (partly omitted)

CLONE_FILES,4 and CLONE_SIGHAND5 flags, so that PiP tasks behave
like normal processes regarding PID, termination, file descriptors,
and signal handling.
Thread Mode: In this mode, the pthread_create() function is
used instead of clone(). PiP tasks behave like threads regarding
TID, termination, file descriptors, and signal handling. Again, PiP
provides the variable privatization even in this thread execution
mode.

The clone() system call is Linux specific, and using this system
call means that PiP depends on Linux. If a system does not support
the clone() system call, then the pthread_create() function can
be used instead. This POSIX function is more widely supported
than the clone() system call, and this makes PiP independent from
the OS kernel. Thus, G3 can be achieved.

As described so far, PiP is implemented as a language-independent
library, and G4 is satisfied.

By combining all the above techniques, all design goals are
achieved.

3.4 API
Figures 3 summarizes the functions defined in the PiP library. The
three core functions are the minimal set of APIs that enables PiP.
The pip_spawn() function is called from the PiP root process,
which is a normal process, to create a PiP task located in the same
VAS as the root. The pip_init() and pip_fin() functions are to
initialize and finalize the PiP library. The PiP root process must
call them, but the PiP tasks call them only if they use the other PiP
functions. The pip_get_addr() function returns the address of a
global variable having the specified name owned by the specified
PiP task or root. Pthread’s barrier and mutex functions can be used
to synchronize PiP tasks and root. The pip_barrier_init|wait()
functions provide a simple busy-wait based synchronization.

3.5 Portability
PiP depends on the dlmopen() function, PIE, and the clone() sys-
tem call or pthread_create() function. The most widely used
Linux in high-performance computing supports all of them.

4If set, tasks share the same file descriptor table.
5If set, tasks share the same signal handler table.

Tables 2 and 3 list the machine environments used in this paper.
As shown in these tables, PiP can run on various OS kernels and
CPU architectures. One may argue that all operating systems of
the machines listed in Table 3 are Linux family. According to the
Top500 as of November 2017, however, Linux family OSes run on
all Top500 machines [38].

Another goal of PiP is language system independence. A typical
language system consists of a compiler, linker, runtime libraries,
and debugger; it also may include profiling systems. None of these
is easy to develop and maintain. PiP is a small library of only about
3,000 lines and thus is easy to maintain. Moreover, PiP is language
independent. Indeed, C, C++, and Fortran programs run with PiP.
The process execution mode of PiP can run with a thread run-
time such as OpenMP. Depending on the OpenMP implementation,
OpenMP programs may also run with the thread execution mode
of PiP.

3.6 Robustness and Debuggability
Unlike the multiprocess model, the VAS sharing model of PiP re-
moves the protection boundaries of processes in order to improve
performance of intercore communication. PiP assumes that all PiP
tasks spawned by the same root always behave properly. The mem-
ory corruption on a PiP task may cause all tasks in the same VAS to
crash, similar to the risk in a multithread program. It is a tradeoff
between robustness and performance. The user should share the
VAS only when needed.

The complexity of debugging a PiP program is similar to that of a
multithread program. A common mistake in multithread program-
ming is that the user does not properly synchronize simultaneous
access from multiple threads to a shared variable or data. In PiP,
however, the user must explicitly declare every shared variable or
data by exchanging the address; thus, the risk of introducing such
bugs in a PiP program is small in practice.

4 PIP SHOWCASES
Although users may use PiP directly, we expect that the most com-
mon case is to use PiP as an underlying software layer of parallel
runtimes; hence, users may not recognize using PiP. The PiP model
shows a process aspect (i.e., variable privatization) and a thread
aspect (i.e., VAS sharing). The programming models based on multi-
process or multithread can be implemented by adopting either of
the aspects.

In this section, we demonstrate how PiP can benefit the widely
used MPI and OpenMP programming models. These examples,
however, are not intended for PiP to take over the MPI or OpenMP.
PiP merely provides another low-level support of these models for
users who are not satisfied with the performance of conventional
process-based or thread-based implementation. We also show the
benefit of PiP in an emerging in situ analysis application.

4.1 Using PiP in MPI Runtime
MPI is themostwidely used parallel programmingmodel on distribu-
ted-memory systems. We extended the process launching in the
MPICH implementation of MPI (v3.3a2) to use a PiP task as an
MPI process. We then chose two internal processing of MPICH to
showcase the process aspect of PiP with efficient memory sharing.



The presented techniques are generally valid also for other MPI
implementations.
Process Launching: MPICH utilizes a Hydra process management
system to start parallel jobs [4]. It spawns a helper agent process,
called pmi_proxy, at each node on the system to handle any pro-
cess management functionality, such as MPI process spawning and
cleanup. In our PiP-supported MPI runtime, the proxy process is the
PiP root at each node, and it spawns all MPI processes on that node
as PiP tasks by calling the pip_spawn() function. Since Hydra is
designed to create normal processes, PiP runs only with the process
mode in this implementation. The number of lines to change Hydra
to spawn PiP tasks is only about 200.

In this prototype implementation, the proxy process (PiP root)
and MPI processes (PiP tasks) share the same VAS. Whether or
not a user is malicious, an MPI process may destroy the data of
the pmi_proxy process, resulting in aborting the MPI execution on
this node. Fortunately, the hierarchical process structure of Hydra
can successfully report this error to the user. If protection of the
process manager process is required in an MPI implementation,
then the process manager creates another process responsible only
for spawning PiP tasks as MPI processes.
Optimizing Intranode Communication: Traditional MPI imple-
mentations typically utilize a portable POSIX shmem–based mech-
anism to transfer messages between processes on the same node.
Such approaches, however, do not allow the MPI runtime to directly
expose and share user-managed buffers such as those allocated in
user applications and passed into MPI calls. Consequently, the MPI
runtime has to create additional internal buffers shared between the
communicating processes and utilize expensive 2-copy processing
to transfer messages [8]. Kernel-assisted memory-mapping tech-
niques such as XPMEM support dynamic exposing and sharing of
user buffers, but the expensive setup cost of sharing a buffer cannot
be avoided.

PiP’s VAS sharing feature can inherently support dynamic shar-
ing of user buffers without any kernel assistance. The eager protocol
is commonly used for small message transfer where the sender pro-
cess copies data into an available chunk of the preallocated shared
queue on the receiver process. We still keep it in the PiP-based
version for better overlap of communication. In medium and large
message transfer, the traditional rendezvous protocol involves heavy
shared buffer creation or memory exposing (i.e., in XPMEM) at the
handshake step. Although this overhead can be diluted by caching
the exposed memory regions, it can be entirely eliminated if we
use PiP. We need to exchange only the address of the user buffer
through the handshake; the receiver then moves data within only a
1-copy. Because the send buffer cannot be used by the user until the
copy is completed, the receiver process has to notify the completion
after the memory copy is done.
Enhancing Shared-Memory Allocation: MPI-3 introduced the
MPI_Win_allocate_shared() interface that allocates a shared-
memory region for multiple processes on the same node. It enables
an alternative to the traditional message-based MPI communication
in the shared-memory environment. That is, the user can explic-
itly locate data in the shared-memory region, and the processes
access such data by using direct load/store or MPI RMA operations.
Obviously, this model does not require extra data copy that has to

be involved in the message-based model (see the aforementioned
eager protocol), thus improving performance [21].

In mainstream MPI implementations, the shared-memory region
is usually allocated by using POSIX shmem or special memory
mapping tools such XPMEM [19, 21]. The data-accessing overhead
is identical under both approaches. In our prototype of PiP-aware
MPI, we reuse the design for scalable window allocation introduced
in [21] but with a simplified allocation step. A root process allocates
a memory region (e.g., by calling malloc()), and that region is
naturally accessible by others.

As a more significant benefit, the PiP-based version also reduces
the PF overhead of performance-critical data access because all
PiP tasks share the same PT. We demonstrate the performance
difference in Section 7.2.
Other Opportunities: The PiP-aware MPICH is only a prototype
implementation. PiP’s VAS sharing model can be beneficial also for
many other internal aspects of the MPI runtime such as the col-
lective communication [24] and the memory-saving optimizations
for scaling out the number of MPI processes [20, 31]. In this paper,
we focus on the core concept of the PiP model and thus leave deep
exploitation of MPI optimizations for future work.

4.2 Using PiP in Hybrid MPI+Threads
The hybrid MPI+Threads model has become the norm for program-
ming on multicore and many-core platforms. Although the VAS
sharing capability of threads allows computation to be efficiently
executed in parallel on multiple cores of a node, it often suffers
from heavy overhead or degraded parallelism in communication
when scaling across nodes with an internode communication run-
time such as MPI. We describe the critical challenges in the hybrid
MPI+Threads model and present a solution based on the thread
aspect of PiP that combines VAS sharing and variable privatization
features.
Limitations in Hybrid MPI+Threads: The MPI standard pro-
vides four levels of thread safety. Support of MPI_THREAD_MULTIPLE
(denoted by multithreading) safety6 is known to be expensive [5].
The reason is that the message-passing semantics in MPI are de-
signed for processes; that is, MPI ranks are assigned at the process
level, and the message matching is based on a set of {rank, tag,
communicator}. Consequently, the implementations of MPI usually
isolate internal resources (e.g., the message-matching queue) per
process. When multiple threads coexist on a process, they have to
exclusively access the resources with expensive lock protection. Amer
et al. [1] and Dang et al. [11] have optimized such critical issues
from the locking aspect, but non-negligible overhead still exists
compared with the single-threaded case. Although the contention
may be reduced by partitioning the range of communicator, sender
rank, and tag, such an approach cannot address the complication
of wildcard receive.7 As a result, most MPI implementations still
utilize coarse-grained critical sections for simplicity and support of
complete semantics.

In addition to substantial contention overhead, the performance
ofmultithreadedMPI communication is limited by the low utilization

6MPI_THREAD_MULTIPLE: Multiple threads can make MPI calls simultaneously.
7Wildcard receive: A receive with MPI_ANY_SOURCE can match with a message from
arbitrary sender rank in the communicator; similar semantics apply to MPI_ANY_TAG.



of network resources. For HPC applications that usually issue small
to medium messages, concurrent utilization of multiple network
hardware contexts (e.g., on InfiniBand and Intel Omni-Path) is
especially important for boosting network throughput. However,
multiple threads on a process have to post messages to the sameMPI
stack through the critical sections. This process reduces the number
of cores that can concurrently post messages to the network, thus
the message throughput of multiple threads can be significantly
lower than that of multiple processes.

Some restricted programming models can limit the threads con-
currency at access to the communication runtime (e.g., MPI_THREAD_
FUNNELED, denoted by funneled8), thus eliminating the contention
overhead; however, such models still cannot address the network
utilization issue. Recent work has focused on resource isolation
for threads in the communication runtime. For instance, the MPI
thread endpoint concept is currently under investigation by the
MPI Forum [14]. A PMPI library-based extension of MPI has been
implemented by translating threads to proxy processes; however,
additional data offload overhead cannot be avoided [37].
Applying PiP to the Multithreading Model: As an alternative
solution, we can use PiP tasks as the underlying support for the
multithreading runtime, similar to Pthreads. This is based on the
notion that PiP allows arbitrary data sharing between tasks similar
to threads. It also enables variable privatization similar to processes.
Thus, the performance issues of multithreaded MPI disappear.

Here we showcase the widely used OpenMP fork-join model. For
simplicity we did not change the OpenMP runtime, but we applied
all the necessary changes to our test proxy application for a quick
showcase of PiP. Figure 4 compares a simple OpenMP programwith
its translated execution code based on PiP tasks. Five modifications
must be applied: (1) the master task is decided by checking the
PiP IDs (line 10), (2) every task queries the address of the shared
instance explicitly (e.g., the instance is allocated on the master task.
pip_get_addr() is used to query the address of a global variable, as
shown in line 8), (3) the barrier pragma and other implicit barriers
are replaced with pip_barrier_wait() (lines 12 and 20), (4) the
for pragma is replaced with explicit workload distribution (lines
14–17) and (5) the “task teams” are managed by creating additional
MPI subcommunicator at the application initiation time (omitted
in Figure 4). We note that these changes can be implemented more
efficiently inside the PiP-aware OpenMP implementation. We leave
this task for future work.

We also changed the application code to replace the original tag-
based message matching for multiple threads with distinct ranks
because every PiP task can own a different MPI rank. No change
is required in the MPI library except the process launching men-
tioned in Section 4.1. Although the PiP-based approach requires
several changes, it completely resolves the performance issues of
multithreaded MPI. We demonstrate the performance improvement
in Sections 7.3.

4.3 Data Analysis Application
Apart from the parallel programming aspects, PiP can directly bene-
fit applications in several ways. For instance, its VAS sharing ability
can be utilized for in situ programming. In most in situ frameworks,
8MPI_THREAD_FUNNELED: Only the master thread on a process can make MPI calls.

1 int a[N];
2 int main() {
3 int i;
4
5 #pragma omp parallel
6 {
7
8
9 #pragma omp master

10 { /* compute master */ }
11
12 #pragma omp barrier
13
14 #pragma omp for
15 for (i=0; i<N; i++)
16 { /* compute a[i] */ }
17
18
19
20 /* implicit barrier */
21 }
22
23 }

(a) OpenMP program

1 int a[N];
2 int main() {
3 int i, myid, npips, masterid = 0;
4 pip_init(&myid, &npips, NULL, 0);
5 /* --- omp parallel --- */
6 {
7 int *ap;
8 pip_get_addr(masterid, "a", &ap);
9 /* --- omp master --- */

10 if (myid == masterid)
11 { /* compute master */ }
12 pip_barrier_wait(...);
13
14 /* --- omp for --- */
15 int s = N/npips * myid;
16 int e = s + N/p;
17 for (i=s; i<e; i++)
18 { /* compute a[i] */ }
19
20 pip_barrier_wait(...);
21 }
22 pip_fin();
23 }

(b) PiP-based program

Figure 4: Example of PiP-based OpenMP program

applications use expensive data copies to exchange data with con-
currently running analysis routines. Several approaches have been
studied to implement theseM×N data exchanges [2, 12, 15, 45].

By porting the in situ framework with PiP, a PiP task is created
and kept aside as the in situ process and shares the same VAS
with the other application PiP tasks (e.g., the science simulation).
Thus, the in situ process can directly access the application’s data.
One common issue with these frameworks is the assurance of
data consistency between the application and the in situ task. One
approach is to use locking and signaling mechanisms to indicate
when data can be accessed and overwritten. Another option is
to give the consumers their own copies of the data. The former
can reduce copies and memory consumption, but the latter can
allow for higher concurrency because the simulation can run while
the analysis is processing the data. For the experiments shown in
Section 7.4, we chose the latter approach, but the implementation
is flexible enough to allow for either method.

4.4 Summary of PiP Utilization
As showcased in MPI runtime and the data analysis application, the
process aspect of PiP becomes beneficial when memory sharing
is required (i.e., variable privatization with VAS sharing). It outper-
forms the state-of-the-art memory-mapping techniques because of
its low overhead, ease of use, and high portability.

The thread aspect of PiP, on the other hand, enables a unique
VAS sharing environment with inherent variable privatization. Here
we consider two situations: (1) a program does not contain any
statically allocated variables or contains some of them but rarely
accesses, and (2) a program follows the multiprocess model where
static variables are intensively used. PiP has no advantage over the
multithread model in the former case; however, the latter can be dra-
matically optimized by using PiP with only small code reconstructi-
on—something no other existing technique can achieve, as demon-
strated in the hybrid MPI+Threads example.

The majority of hybrid MPI+Threads-based applications still
follow the MPI funneled safety to work around the performance
issues in multithreading safety. However, such an approach can no
longer satisfy the network throughput, especially on many-core
architectures where performance highly relies on the concurrence



of a large number of low-frequency cores polling the network. Thus,
an increasing number of applications are being built by using the
multithreading mode [26], and PiP will be the ideal tool to maximize
communication performance.

5 EXPERIMENTAL SETTING
We used four experimental platforms to cover several OS kernels
and CPU architectures in our evaluation, as listed in Tables 2 and 3.
The Linux kernel on the K computer is old, and we gave up trying
to install the patched Glibc. The CPU of the K computer supports
only eight cores; thus, PiP without the patched Glibc can still utilize
all CPU cores.

McKernel is a multikernel that runs Linux with a lightweight
kernel side by side on compute nodes [17]. In the experiments
with McKernel on Wallaby, McKernel was configured to run on 14
cores out of 16, and the Linux kernel ran on the remaining 2 cores.
Since the current McKernel is unable to handle the clone() flag
combination described in Section 3.3, the PiP programs ran in the
thread execution mode.

We report the results of each experiment by averaging 10 execu-
tions, unless otherwise stated.

Table 2: Experimental platform hardware information

Name CPU # Cores Clock Memory Network
Wallaby Xeon E5-2650 v2 8×2(×2) 2.6GHz 64 GiB ConnectX-3
OFP† Xeon Phi 7250 68(×4) 1.4GHz 96(+16) GiB Omni-Path
K [44] SPARC64 VIIIfx 8 2.0GHz 16 GiB Tofu

Table 3: Experimental platform software information

Name OS Glibc PiP Exec. Mode(s)
Wallaby Linux (CentOS 7.3) w/ patch process and thread
Wallaby McKernel+CentOS 7.3 w/ patch thread only
OFP† Linux (CentOS 7.2) w/ patch process and thread
K XTCOS w/o patch process and thread

† Oakforest-PACS (OFP) http://jcahpc.jp/eng/ofp_intro.html. The flat mode was
used in the showcase evaluations in Section 7.1 and 7.3 without using MCDRAM (16
GiB). The other evaluations were done with the cache quadrant mode.

6 PIP PERFORMANCE ANALYSIS
We evaluate the characteristics of PiP by using a set of in-house
microbenchmarks.

6.1 Setup Overhead
In our first microbenchmark, the root task created and initialized
a 2 GiB shared array with integer elements, and then a child task
summed members of the array, assuming that the root task sent
integer data to the child task via the allocated region. We imple-
mented the XPMEMbased and POSIX shmem–based versions. Table
4 shows the times spent in the XPMEM and POSIX shmem functions.
PiP also provides the XPMEM APIs so that the XPMEM version can
be easily linked to PiP. Most of the XPMEM functions provided by
PiP do almost nothing, and the overhead of each function is only
40–80 clock cycles.

Table 4: Overhead of XPMEM and POSIX shmem functions
on Wallaby/Linux

XPMEM Cycles
xpmem_make() 1,585
xpmem_get() 15,294

xpmem_attach() 2,414
xpmem_detach() 19,183
xpmem_release() 693

POSIX Shmem Cycles
Sender shm_open() 22,294

ftruncate() 4,080
mmap() 5,553
close() 6,017

Receiver shm_open() 13,522
mmap() 16,232
close() 16,746

Note: Measured only once.

6.2 Page Fault Overhead
Figure 5 shows the time series of each access using the same mi-
crobenchmark program used in the preceding subsection. Element
access was stridden with 64 bytes so that each cache block was
accessed only once, to eliminate the cache block effect. The left-
hand graphs show spikes with 4 KiB page size. The spike heights
of XPMEM are higher than the ones of POSIX shmem; however,
the PiP process mode and PiP thread mode show the lowest spike
heights. With XPMEM and POSIX, a PF happened every time a
new memory page is accessed. The spikes in PiP are the time spent
for the translation lookaside buffer (TLB) misses. In PiP, the whole
array was touched at the time of initialization by the root task, and
all required PT entries were created then.
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Figure 5: Time series of array access with 64-byte stride on
Wallaby/Linux

The right graphs show the same benchmark but using HugeTLB.
POSIX shmem cannot handle the HugeTLB on this Linux kernel.
XPMEM does show huge spikes again on the every 4 KiB page
boundary. We consulted the XPMEM device driver source code
(version 2.6.4) and found that the XPMEM driver can create only
4 KiB PT entries, regardless of the page size of the target region.
In PiP, no TLB-miss spikes can be seen this time because of using
2 MiB pages.

6.3 Total Page Table Size
This subsection focuses on the memory consumption of PTs. We
compared the PiP process and thread models with Pthread, process
fork with POSIX-shmem (the mmap()ed region of the parent process

http://jcahpc.jp/eng/ofp_intro.html


was inherited by the child process for simplicity), and process fork
with XPMEM.
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Figure 6: Total page table size running on Wallaby/Linux

Figure 6 shows the total size of PTs in a node (y-axis) with vary-
ing number of tasks (x-axis). In this microbenchmark, a 128 MiB
memory region was shared or made accessible among all tasks.
Each task accessed the whole memory region so that all PT en-
tries for the memory region were created. Then we consulted the
/proc/meminfo file to get the memory size for all PTs in that node.
In Fork&Shmem and Fork&XPMEM, each process has its own PT
with separate PT entries for this memory region to share. In con-
trast, PiP and Pthread share the same PT. As shown in this figure,
the former cases consume much more memory just for PTs. Table 5
summarizes the number of PT entries required for each technique.

Table 5: Total number of page table entries

Total Number of Page Table Entries
Pthread M + D +

∑
Si

PiP M +
∑
Di +

∑
Si

Process + POSIX shmem (M × N ) +
∑
Di +

∑
Si

Process + XPMEM (M × N ) +
∑
Di +

∑
Si

M is the number of PT entries for the shared-memory region(s).
Si is the number of PT entries for the stack segment of task i .
Di is the number of PT entries to map shared objects belonging to task i .
N is the number of tasks (processes or threads).

6.4 Spawning Time
Our next microbenchmark measured the time for spawning child
tasks. In PiP, all memory mappings were done at the program
loading time, and its cost is hidden from the time for accessing it.
The purpose of this microbenchmark is to measure this “hidden”
cost. Figure 7 compares the time to spawn null tasks by using PiP,
Pthread, fork()&exec(), vfork()&exec(), and posix_spawn().
As shown in this figure, the PiP spawning times are mostly the
same as those with creating processes, except the OFP case. In most
cases, although the program loading is known to be costly, it does
not happen frequently, so this overhead is acceptable.

6.5 Performance of mmap()/munmap()
In PiP and Pthread, the memory management structures that point
to the same PT in the Linux kernel are also shared. These structures
must be locked in order to avoid inconsistent states by the race
conditions being accessed simultaneously. This situation never
happens between processes; and the lock overhead might be a weak
point of PiP when the number of memory segments is significant,
as shown in Figure 1.

1E-4

1E-3

1E-2

1E-1

1E+02E+0

1 10 100 200Ta
sk

 S
pa

w
ni

ng
 T

im
e 

[S
]

# Tasks
1 10 100 200

# Tasks

OFP/Linux the K/XTCOS

Wallaby/McKernel

1E-4

1E-3

1E-2

1E-1

1E+02E+0

Ta
sk

 S
pa

w
ni

ng
 T

im
e 

[S
]

PiP:process

PiP:thread

Fork&Exec

Vfork&Exec

PosixSpawn

Pthread

Wallaby/Linux

16 6432 128

16 6432 128

 8 16

Note: On Wallaby/Linux and Wallaby/McKernel, the results of all approahes are
overlapped except Pthread; on OFP/Linux, the results of Fork&Exec, Vfork&Exec,
and PosixSpawn are overlapped, and the results of PiP models are overlapped; on
K/XTCOS, the results of PiP:thread and Pthread are overlapped.

Figure 7: Task spawning time on four platforms
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Figure 8: Performance of mmap()/munmap() with ten tasks on
four platforms

In this benchmark, memory pages were mmap()ed and then
munmap()ed, repeating 10,000 times. We created ten tasks and mea-
sured times until all tasks finished. Each PiP task, Pthread, or forked
process was bound to a dedicated CPU core so that it could run
without having any context switching (except in the K computer).
As shown in Figure 8, PiP performance is similar to that of Pthread,
whereas forked processes run much faster.

7 SHOWCASE EVALUATION
We used MPICH v3.3a2 and the PiP-aware version to compare
the optimizations in MPI runtime. For the evaluation of hybrid
MPI+Threads in Section 7.3, we used the Intel 2017.4.196 package
and MPICH v3.3a3 that enables a two-level priority lock optimiza-
tion for low contention overhead [1]. Every PiP task or thread is
bound onto a different physical core in the compact shape.
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Figure 9: MPI intranode bandwidth with two processes on
Wallaby/Linux and OFP

7.1 MPI Intranode Communication
We first measured the optimized MPI intranode communication, as
described in Section 4.1. We disabled the protocol-switching thresh-
olds in order to demonstrate the limit of each approach on the test
platforms.We compared the PiP 1-copy approach for the rendezvous
protocol with the original POSIX shmem–based implementation
with 2-copy, denoted by PiP/rndv and orig/rndv, respectively. As
a reference, we also included the unchanged eager protocol of
each MPI implementation, which performs 2-copy with less syn-
chronization, denoted as PiP/eager and orig/eager, respectively. We
measured the Intel MPI Benchmarks (IMB) 2017 SendRecv test with
the on-cache mode on a single node.

Figure 9(a) shows the bandwidth on Wallaby/Linux. As expected,
the unchanged eager protocol benefits small messages because of
less synchronization. PiP/rndv overcomes the eager approaches
when the message size increases to 4 KiB because of less data copy.
It achieves a peak bandwidth of 35.4 GiB per second at a 128 KiB
message size, whereas the eager copy reports up to 12.8 GiB/s (2.8x
reduced) and orig/rndv reports only 8.7 GiB/s (4x reduced). When
the message increases to 1 MiB, however, the bandwidth starts
degrading because of heavy last-level cache and TLB misses and
eventually reduces to the same level as the other approaches. Fig-
ure 9(b) shows the bandwidth on a single node of OFP. The eager ap-
proaches outperform the others for messages smaller than 256 KiB,
indicating a larger eager threshold. For large messages, PiP/rndv
contributes up to 6.7 GiB/s bandwidth, but orig/rndv achieves a
peak of only 3.8 GiB/s.

7.2 MPI Shared-Memory Enhancement
We then evaluated a five-point two-dimensional stencil kernel that
uses the MPI_Win_allocate_shared(). We compared the original
process-based MPICH and the PiP-aware MPICH with enhanced
shared-memory allocation (see Section 4.1) by focusing on the
number of PFs. The stencil kernel is described in [21] and available
online.9

Figure 10 shows the number of PFs when the stencil programs
ran with a size of 8,192 × 8,192 in strong scaling, 1,000 iterations.
These results were sampled just before and after the stencil loop.
The number of PFs with original MPI is two or more orders of
magnitude higher than that of the PiP-aware version. This implies

9Example program stencil_mpi_shmem.c in Advanced MPI Programming - Tutorial
at SC14. http://www.mcs.anl.gov/~thakur/sc14-mpi-tutorial
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Figure 11: Multipair message rate between two OFP nodes

that the frequent intranode data access to newly allocated shared
regions may suffer from the PF overhead.

7.3 Communication in Hybrid MPI+Threads
The third set of experiments focused on the multithreaded MPI com-
munication in the hybrid MPI+Threads programs (see Section 4.2).
We measured a message rate microbenchmark and a proxy applica-
tion.
Multithreaded Message Rate: We first employed the OSU mi-
crobenchmark (version 5.1) osu_mbw_mr test that measures the
message rate with multiple pairs of processes. We compared the PiP-
based version (MPI/PiP) with the thread-based version (MPI+Thread)
on two nodes of OFP. We also measured the MPI-only model with
processes (MPI/proc) as the reference showing the best network
utilization without any contention overhead. In MPI/PiP, we sim-
ply ran with the PiP-aware MPICH. In MPI+Thread, we changed
the benchmark to launch only one process on each node and cre-
ate multiple threads on each process. The communication hap-
pened between each pair of threads located on different nodes. As
shown in Figure 11, MPI/PiP delivers improved message rate with
increasing numbers of pair connections, similar to the results of
MPI/proc. However, MPI+Thread shows degradation. This is be-
cause the thread approach fails to concurrently utilize the network
by multiple cores but introduces additional contention overhead in
the multithreaded MPI.

http://www.mcs.anl.gov/~thakur/sc14-mpi-tutorial
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Figure 12: Strong scaling of hybrid MPI+OpenMP SNAP on
OFP.

SNAPParticle Transport ProxyApplication: SNAP10 is a proxy
application that models the performance of modern discrete or-
dinates neutral particle transport application. SNAP mimics the
computational workload, memory requirements, and communi-
cation patterns of the PARTISN neutron transport code [3] with
parallelism at the level of the spatial, the angular, and the energy
dimensions. The implementation uses the hybrid MPI+OpenMP
model where the spatial domain is partitioned across MPI ranks and
traversed with sweeps along the angular domain. The energy do-
main is parallelized by threads. In the OpenMP parallel regions, the
threads perform both computation and MPI point-to-point commu-
nication following themultithreading safety. We updated the SNAP
code to be PiP-aware following the description in Section 4.2. We
compared the PiP-aware version (MPI+PiPs) with the conventional
thread-based approach (MPI+OMP), and measured the MPI-only
model as a reference. We note that the domain decomposition in
the MPI-only model and the hybrid model are different in the SNAP
code, and the comparison of these models is beyond the scope of
this paper.

We generated the input files for strong scaling based on the
in-package 3d_mms_t2.inp regression test input, which uses the
method of manufactured solutions setting. We increased the spa-
tial domain size, the angular per octant, and the energy group
to (nx=128,ny=32,nz=32), nanд=32, nд=16, respectively. We fixed
the problem size and varied the number of MPI ranks along the y
and z dimensions (denoted npey and npez) for strong scaling and
fixed the number of threads per process (nthreads=4) in the hybrid
approaches.

Figure 12 reports the solve time of 10 time steps. MPI+PiPs al-
ways outperforms MPI+OMP. Especially when scaling to a large
number of cores, the communication becomes dominant, and thus
PiP delivers more benefit, contributing close to 3.2x performance
speedup on 256 cores (4 nodes). The reduced speedup on 1,024 cores
(i.e., 2.2x) indicates that the contention overhead of multithreaded
MPI is optimized by the priority locks. Nevertheless, the network
utilization issue still exists and relies on the support from PiP. We
note that the MPI-only model shows faster solve time than that
of the hybrid approaches on a single node (up to 64 cores). The
reason is that it assigned every energy domain to a different process
whereas the hybrid approaches divided each domain and distributed
to four PiP tasks or threads. Thus, the former may require less in-
tercore data movement. We used only four threads per process

10https://github.com/lanl/SNAP

4,4,4 6,6,6 8,8,8 10,10,10 12,12,121

1.2

1.4

1.6

1.8

LAMMPS: 3d Lennard-Jones melt (xx, yy, zz)

POSIX shmem

PiP:Process

Sl
ow

do
w

n 
R

at
io

(b
as

ed
 o

n 
w

/o
 In

 s
itu

)

Figure 13: LAMMPS in situ: POSIX shmem vs. PiP running
on a single Wallaby/Linux node

in the hybrid approaches because of the limitation of the parallel
algorithm in SNAP; however, the performance gap is known to
increase when more threads are utilized, as already demonstrated
in Figure 11.

7.4 In Situ Analysis of LAMMPS
Our last experiment is a preliminary evaluation of the LAMMPS [23,
33] application attached with an in situ program. The in situ pro-
gram is a nearest-neighbor program for finding atom pairs having
a certain distant range (thought to be chemically bonded). The orig-
inal generic glue library for combining LAMMPS and the in situ
program copies the Dump data generated by LAMMPS from the ap-
plication’s space into a POSIX shmem–based shared buffer [10]. The
nearest-neighbor program copies the data in the shared-memory
buffer to its internal buffer. Thus, the LAMMPS process can con-
tinue to compute the next simulation step in parallel with the in situ
analysis. The in situ analysis can process the data either by directly
accessing the chunked data in the shared buffer or by copying the
data into a local buffer. Because our analysis program expects all
data to be in a linear buffer, we utilized the latter approach in the
experiment. In PiP version, the in situ program ran as a PiP task
created by LAMMPS. This glue library was modified to utilize VAS
sharing of PiP (see Section 4.3). LAMMPS simply passed the address
of the Dump data, and the nearest-neighbor program copied the
data into its internal buffer.

Figure 13 compares the slowdown ratios of using original POSIX
shmem and using PiP based on the LAMMPS execution time with-
out having the in situ program. The problem size (x-axis) was varied
from 4,4,4 (smallest) to 12,12,12 (largest). In this case, LAMMPS
and the in situ program ran on one node, and the single LAMMPS
process ran with four OpenMP threads. The PiP-based approach (1-
copy) performs more efficiently than does the POSIX shmem–based
version (2-copy), resulting in less than 10% slowdown, whereas
the latter requires up to 1.6x more overhead. Since the compute
time greatly exceeds the data transfer time, however, the benefits of
PiP are reduced. This in situ program is computationally intensive,
running on the order of O (P2), where P is the number of atoms, so
the slowdown manifests itself early.

8 SUMMARY AND FUTUREWORK
This paper presents a novel technique for supporting VAS sharing
with privatized variable sets, in order to have the best of both the
multiprocess and multithread execution models. Although this idea
is not new, the implementations proposed thus far have depended
on either the OS kernel or a programming language system. What

https://github.com/lanl/SNAP


makes our proposed technique, called PiP, unique and practical is
that PiP is implemented at the user level, depending only on PIE,
the dlmopen() function, and the clone() system call or pthread_
create() function. In this paper, we showed that the conventional
memory-mapping techniques can suffer from the setup cost for
mapping memory pages of the other tasks and PF overhead when
accessing the shared region. These overheads can be fully avoided
by sharing VAS in PiP.

PiP defines a small set of functions; thus, it is easily integrated
into other runtime libraries as a portable low-level support that can
be available on various HPC platforms. The PiP model does not
take over the conventional multiprocess or multithread execution
model. The goal of PiP is to provide an alternative low-level support
of these models when necessary. We analyzed the performance
characteristics of PiP through a variety of microbenchmarks, and
we demonstrated significant performance gain from using PiP in
several important HPC scenarios, including use in MPI runtime
internal optimizations, integration with the hybrid MPI+OpenMP
model, and support of in situ programming for scientific simulations.
The evaluations were done in several computing environments
including two of the world’s top 10 supercomputers. Evaluation
results indicate up to 3.2x improved performance in the hybrid
particle transport proxy application over 1,024 KNL cores, and a
close to 30% reduced slowdown ratio in the LAMMPS application
with in situ analysis. All these achievements indicate that PiP is an
efficient and practical VAS sharing model for HPC applications that
can be applied to large supercomputing systems.

We plan to investigate the utilization of PiP in other communica-
tion runtime systems such as OpenSHMEM[6] and XcalableMP[28]
as well as with MPI. We will also exploit a comprehensive integra-
tion with existing OpenMP implementations.
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