MT-MPI: Multithreaded MPI for Many-
Core Environments

Min Sil»? Antonio J. Peiia? Pavan Balaji 2
Masamichi Takagi® Yutaka Ishikawa!

1 University of Tokyo
2 Argonne National Laboratory
3 NEC Corporation

Presentation Overview

Background and Motivation
Proposal and Challenges
Desigh and Implementation

— OpenMP Runtime Extension
— MPI Internal Parallelism

Evaluation
Conclusion

Many-core Architectures

Massively parallel environment

Intel® Xeon Phi co-processor

— 60 cores inside a single chip, 240
hardware threads

— SELF-HOSTING in next generation,
NATIVE mode in current version

Blue Gene/Q

— 16 cores per node, 64 hardware threads

Lots of “light-weight” cores is
becoming a common model

MPI programming on Many-Core Architectures

Thread Single mode Funneled / Serialized mode
#pragma omp parallel P T—
/* user computation */ { /* user computation */ } é é é é COMP.
MPI_Function (); MPI_Function (); ; A
#pragma omp parallel % % % % comp
/* user computation */ { /* user computation */ } ‘
Multithreading mode

i MPI Process

#pragma omp parallel PR
t % % é %COMP*

/* user computation */

1
P1,COMM.
MPI_Function (); ! :

/* user computation */ ? $ $ $COMP,

}

Problem in Funneled / Serialized mode

 Funneled / Serialized mode
— Multiple threads are created for user computation
— Single thread issues MPI

#pragma omp parallel — S
{ /* user computation */ } é % % é COMP.

MPI_Function (); Pt e comm
la' _:__.!.__..__To

b I
{*ser computacion * R 3T T ow
. Many threads are IDLE! |

2. Single lightweight core delivers poor performance

Our Approach

e Sharing Idle Threads with Application inside MPI

#pragma omp parallel
{ /* user computation */ }

MPI_Function (){
#pragma omp parallel

{
}

/* MPI internal task */

}

#pragma omp parallel
{ /* user computation */ }

MPI Process

b1l o

N
L2 I
? ? ? i% comp

ééggmf

Challenges (1/2)

 Some parallel algorithms are not efficient with
insufficient threads, need tradeoff

e But the number of available threads is UNKNOWN !

#pragma omp parallel

{ '
/* user computation */
#pragma omp single '
{
/* MPI_Calls */ y
) SINGLE SECTIO

}

Challenges (2/2)

* Nested parallelism

— Simply creates new Pthreads, and offloads thread
scheduling to OS,

— Causes threads OVERRUNNING issue

#pragma omp parallel Creates N Pthreads !

{
#pragma omp single
{
#pragma omp parallel Creates N Pthreads !
{..} v
} ONLY use IDLE threads

Design and Implementation

— OpenMP Runtime Extension

— MPI Internal Parallelism

Implementation is based on Intel OpenMP runtime (version 20130412)

Guaranteed Idle Threads VS Temporarily Idle Threads

Guaranteed Idle Threads
— Guaranteed idle until Current

thread exits

Example 1

#pragma omp parallel

{

#pragma omp single
{...
}

Example 2

#pragma omp parallel

{

#pragma omp critical
{..
}

\ A A 4

s

 Temporarily Idle Threads

— Current thread does not know

when it may become active
again

Example 3

#pragma omp parallel

{

#pragma omp single nowait
{...
}

#pragma omp critical
{..
}

10

Expose Guaranteed Idle Threads

* MPI uses Guaranteed Idle Threads to schedule its
internal parallelism efficiently (i.e. change algorithm,
specify number of threads)

#pragma omp parallel
#pragma omp single
{
MPI_Function {
num_idle_threads = omp_get num_guaranteed_idle_threads();
if (num_idle_threads < N) {
/* Sequential algorithm */

} else {
#pragma omp parallel num_threads(num_idle_threads)
(-}

}

i

Design and Implementation

— OpenMP Runtime Extension
— MPI Internal Parallelism

1. Derived Datatype Related Functions
2. Shared Memory Communication
3. Network-specific Optimizations

Implementation is based on MPICH v3.0.4 12

1. Derived Datatype Packing Processing

 MPI_Pack / MPIl_Unpack
e Communication using Derived Datatype

block_length

count)

(_A_\

0

1

2

5

6

7

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

]

stride

|

— Transfer non-contiguous data

— Pack / unpack data internally

:> 0|5 |10[15]20

#pragma omp parallel for
for (i=0; i<count; i++){

dest[i] = src[i * stride];
}

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

13

2. Shared Memorx Communication

Original sequential algorithm <« Parallel algorithm

— Shared user space buffer — Get as many available cells as we
between processes can
— Pipelining copy on both sender — Parallelize large data movement

side and receiver side

Sender Shared Buffer Recelver Sender Receiver
S Shared Buffer
—>
____________ CelllO] > | cello]
—>
—>
_User el I User 1> | Cell[1]
Buffer cell[2] Buffer e
5 |_User _ —> Celll2] |\—>
Cell[3] \ ——— Y &
—> Cell[3]
[A SN N S S User
— sBuffer
—_>
—_>
—_>

(a) Sequential Pipelining (b) Parallel pipelining 14

Sequential Pipelining VS Parallelism

* Small Data transferring (< 128K)

— Threads synchronization overhead > parallel improvement

* Large Data transferring

— Data transferred using Sequential Fine-Grained Pipelining

Sender Buffer |

Shared Buffer v

v v

v

N

Receiver Buffer

— Data transferred using Parallelism with only a few of threads (worse)

VYV

|

— Data transferred using Parallelism with many threads (better)

YWY

WYY

[| |
\A A

v

15

3. InfiniBand Communication

ADI3

 Structures B

— |B context [
— Protection Domain [

]
|
SHMI nemesis }

— Queue Pair (critical) [TCPI B

I.

* 1 QP per connection

— Completion Queue (critical)
PO

e Shared by 1 or more QPs
/ 4 IB CTX N

P1

* RDMA communication PD
— Post RDMA operation to QP
— Poll completion from CQ

cQ QP QP

P2

* OpenMP contention issue i L

Evaluation

1. Derived Datatype Related Functions
2. Shared Memory Communication
3. Network-specific Optimizations

All our experiments are executed on the Stampede supercomputer at the Texas
Advanced Computing Center (https.//www.tacc.utexas.edu/stampede/).

17

Derived Datatype Packing ?

I —

——

Parallel packing 3D matrix of double

>

Packing the X-Z plane with varying Z Hvector €===== L R — >
256 —
/ Vector €
128 =256 .
64 (Parallelize here)
g 32 —=-1K Packing the Y-Z plane with varying Y
o
§_ 16 256 /
»w 8 ~#=4K 128 — =256
4 64
16K 32 == 1K
2 a 16
1 T T T T T T T 1 g 8 == 4K
1 2 4 8 16 32 64 128240 g 5]
Number of Threads) — 16K
Graph Data: 0.5 —k=64K
Fixed matrix volume 1 GB 0.25
Fixed length of Y: 2 doubles 0.125
Length of Z: graph legend 1 2 4 8 16 32 64 128 240
Number of Threads
Graph Data:
Fixed matrix volume 1 GB
Fixed length of X: 2 doubles 18

Length of Y: graph legend

3D internode halo exchange using 64 MPI
processes Z X

AN s Cube 512*512*512 double

16 Large X 16K*128*64 double

_%‘ —#-large X

v 4 * *

Q Large Y Large Y 64*16K*128 double
(Vp]

1 2 4 8 16 32 64 128 240 Large Z 64*128*16K double

Number of Threads

Not strong scaling

BUT we are using IDLE RESOURCES !

19

Hybrid MPI+OpenMP NAS Parallel MG
benchmark

V-cycle multi-grid algorithm to solve

M Communication Time Speedup a 3D discrete Poisson equation.
4 g W Execution Time Speedup N N N
4
g_ 3.5
8 , 3 — -
8_ 5
S 2
1.5
- O O O
0.5 -
0 - Halo exchanges with various dimension
1 2 4 8 16 32 64 128 240 sizes from 2 to 514 doubles in class E with
Number of Threads 64 MPI processes
Graph Data:

Class E using 64 MPI processes

20

Shared Memory Communication

e OSU MPI micro-benchmark

P2P Bandwidth
16
. C
- Caused by poor sequential
4 ; ——64 KB
S \ performance due to too small
- 2 -#-256 KB .
0 Eager/Rendezvous communication
2 1 “1MB threshold on Xeon Phi.
0.5 —<4 MB Not by MT-MPI |
0.25 ~+16 MB
0.125 I I I I I I I]
1 2 4 8 16 32 64 120
Number of Threads Similar results of Latency and Message rate

Poor pipelining but worse parallelism 16

1 2 4 8 16 32 64 120
21

1 2 4 8 16 32 64 120

One-sided Operations and IB netmod Optimization

e Micro benchmark

— One to All experiment using 65 processes

* root sends many MPI_PUT operations to all the other 64
processes (64 1B QPs)

4 - ~-100
S 13 ~=-2000 : E
§ 19 *~ 4000
a g 8000
1.1 —<16000
1 ! , , . . . Parallelized IB Communication

1 2 4 8 16 32 64 3.34
Number of Threads /H
2
/ =&—QPs only
1 T T T T T]

1 2 4 8 16 32 64
Number of Threads 22

D

BW Improvement

One-sided Operations and IB netmod Optimization

e Micro benchmark

— One to All experiment using 65 processes

* root sends many MPI_PUT operations to all the other 64
processes (64 1B QPs)

Profile of the experiment issuing

L 1.44 16000 operations
- //\?—100 Nthreads Time(s)
S 1.3 # ~#-2000 Total | SP [SP/Total
3 it 4000 1 58 | 22 |37.9% —l
& WSOOO
1.1 7/ 16000 Ideal Speedup =1.61
1 ;/ \ Parallelized IB Communication

D

1 2 4 8 16 32 64
Number of Threads

/"E‘ ¢
/ =&—QPs only

1 2 4 8 16 32 64
Number of Threads 23

N

BW Improvement
[ERY

One-sided Graph500 benchmark

* Every process issues many MPI_Accumulate
operations to the other processes in every breadth

first search iteration.

* Scale 2?2, 16 edge factor, 64 MPI processes

Harmonic Mean TEPS

1.7E+06
1.6E+06
1.5E+06
1.4E+06
1.3E+06
1.2E+06
1.1E+06
1.0E+06

B Improvement

=#-Harmonic Mean TEPS

wepr

K

1

16 32 64

2 4 8
Number of Threads

= = =
N w I
Improvement

=
=

—
o

24

Conclusion

 Many-core Architectures

* Most popular Funneled / Serialized mode in Hybrid
MPI + threads programming model

— Many threads parallelize user computation
— Only single thread issues MPI calls

* Threads are IDLE during MPI calls !

* We utilize these IDLE threads to parallelize MPI
internal tasks, and delivers better performance in
various aspects
— Derived datatype packing processing
— Shared memory communication
— IB network communication

25

