Argonne°

NATIONAL LABORATORY

Casper

An Asynchronous Progress Model for MPI RMA on Many-core Architectures

Min Siltl2l - Antonio J. Pefiall, Jeff Hammond!3], Pavan Balajill,

Masamichi Takagi*, Yutaka Ishikawal*

[1] Argonne National Laboratory, USA [3] Intel Labs, USA
{msi, apenya, balaji}@mcs.anl.gov jeff hammond@acm.org
[2] University of Tokyo, Japan [4] RIKEN AICS, Japan
msi@il.is.s.u-tokyo.ac.jp {masamichi.takagi,yutaka.ishikawa}@riken.jp

& THE UNIVERSITY OF TOKYO

Irregular Computations

= Regular computations - Irregular computations

— Organized around dense vectors or — Organized around graphs, sparse
matrices vectors, more “data driven” in

— Regular data movement pattern, nature
use MPI SEND/RECV or collectives — Data movement pattern is

— More local computation, less data irregular and data-dependent
movement — Growth rate of data movement

— Example: stencil computation, is much faster than computation
matrix multiplication, FFT* — Example: social network analysis,

bioinformatics

B > X e »/."\i_"__':;‘f
It Oy 15-.? 22! " f :.".;.v::':::h_ /72/ \ ‘ ' \\\\\u |
L o] =G v 1 Increasing trend of applications are moving to
| al®) XN ~ A irregular computation models
A — w . W; Wa] . . .
‘ >0 % Need more dynamic communication model
T T == X7XN3 2 we rY X A T - J
L. . * FFT : Fast Fourier Transform
Min Si msi@anl.gov , — , , 2
S * The primary contents of this slide are contributed by Xin Zhao.

Argonne National Laboratory, The University of Tokyo

Message Passing Models

= Two-sided communication = One-sided communication
(Remote Memory Access)

Process O Process 1 Process O Process 1

|
Pu a) —

G

Sen a) —

"Computation
"=
a) —— 13

(data)

ata)

ataje—— S

Feature:
Origin (PO) specifies all communication parameters

Target (P1) does not explicitly receive or process
message
Is communication always asynchronous ?

Min Si msi@anl.gov
Argonne National Laboratory, The University of Tokyo

b

\ |
w

Problems in Asynchronous Progress

= One-sided operations are not truly one-sided
— In most platforms (e.g., InfiniBand, Cray)

e Some operations are hardware supported (e.g., contiguous PUT/
GET)

e Other operations have to be done in software (e.g., 3D
accumulates of double precision data)

Process O Process 1

Software implementation of one-sided
operations means that the target process

Computation has to make an MPI call to make progress.
|
MPiicall Not TRULY asynchronous !

a Min Si msi@anl.gov * RDMA : Remote Direct Memory Access 4
Argonne National Laboratory, The University of Tokyo

\ |
w

Traditional Approach of ASYNC Progress (1)

= Thread-based approach

— Every MPI process has a communication dedicated background
thread

— Background thread polls MPI progress in order to handle incoming
messages for this process

— Example: MPICH default asynchronous thread, SWAP-bioinformatics
Cons:

X Waste half of computing cores or oversubscribe cores

X Overhead of Multithreading safety of MPI

Process 0 Process1 Helper
thread
ompu*atlon
/_’ :
_— - 1
- :
|
: -
|
Min Si msi@anl.gov 5

b

Argonne National Laboratory, The University of Tokyo

\ |
w

Traditional Approach of ASYNC Progress (2)

= [nterrupt-based approach

— Assume all hardware resources are busy with user computation on
target processes

— Utilize hardware interrupts to awaken a kernel thread and process the
incoming RMA messages

— i.e., Cray MPI, IBM MPI on Blue Gene/P

Cons:
X Overhead of frequent interrupts

[uny

Execution Time on Rank 0(ms)
O L N WA UuUlo N OO OO
Ny
\\

:

100000

90000

80000 I I

;gggg o 1 Computation
Q.

50000 g Ac

40000 £

30000

20000

10000

0

System Interrupts Process O Process 1
e=0m»Original MPI

=

o

Helper

1 4 16 64 256 1024

+= thread
|n‘terrypt —> !
o \— - 1
- '
Number of Operations
DMMAP-based ASYNC overhead on Cray XC30

Min Si msi@anl.gov 6

Argonne National Laboratory, The University of Tokyo

b

Outline

= Background & Problem statement

= Existing Approaches

= Qur solution : CASPER

= Ensuring Correctness and Performance

= Evaluation

Min Si msi@anl.gov
Argonne National Laboratory, The University of Tokyo

b

A ®
Casper Process-based ASYNC Progress

= Multi- and many-core architectures v v E

— Rapidly growing number of cores i i i i}

— Not all of the cores are always keeping busy

= Process-based asynchronous progress
— Dedicating arbitrary number of cores to “ghost processes”

— Ghost process intercepts all RMA operations to the user processes
Pros:

v" No overhead caused by multithreading safety or frequent interrupts
v" Flexible core deployment Process 0 Process 1 Ghost

v' Portable PMPI" redirection ! ! PI’OEESS

Process 0 Process 1 A Computation
+=
I putaﬂon €---1RT
i
1<_ - -Mﬁu j\> I

Original communication Communication with Casper

Min Si msi@anl.gov * PMPI : name-shifted profiling interface of MPI 8

Argonne National Laboratory, The University of Tokyo

Basic Design of Casper

= Three primary functionalities

1. Transparently replace MPI_COMM_WORLD by
COMM_USER_WORLD

MPI_COMM_WORLD

aeBl s

2. Shared memory mapping between local user

and ghost processes by using MPI-3 COMM_USER_WORLD
MPI_Win_allocate_shared*
3. Redirect RMA operations to ghost processes

Internal Memory mapping PO P1 Ghost Process
Ghost for P1
P1 P2
Process Lock(P1) | i '
P1 offset $ i I | Recv
Lock(GO) EN, TN
P2 offset — _ o
ACC(P1, disp, user_win) : Computatio
& 1

ACC(GO, P1_offset + disp, f
internal_win)i

|
I I
* MPI_WIN_ALLOCATE_SHARED : Allocates window that is shared among all processes in

the window’s group, usually specified with MPI_COMM_TYPE_SHARED communicator.

J +

Il
L
’
I
N
~
-~

Min Si msi@anl.gov 9

Argonne National Laboratory, The University of Tokyo

b

Argonne°

NATIONAL LABORATORY

Ensuring Correctness and Performance

Correctness challenges B m@
1. Lock Permission Management Applications

Self Lock Consistency

MPICH
CrayMPI
MVAPICH
v Asynchronous progress

v’ Correctness
Multiple Simultaneous Epochs v Performance

2
3. Managing Multiple Ghost Processes
4

& THE UNIVERSITY OF TOKYO

ENERGY'?

RMA synchronization modes

= Active-target mode = Passive-target mode
— Both origin and target issue — Only origin issues synchronization
synchronization
— Fence (like a global barrier) — Lock_all (shared)
Fence(win)¥ ¥ *Fence(win) Lock_all(win) %]]
| | |
‘PUT: pUTE<E PUT :3: I |
Fence(win) & & & Fence(win) Unlock_all(win) —‘ : ":
— PSCW (subgroup of Fence) — Lock (shared or exclusive)
| POSt(PO &P2, win) lock(Pl) #—0V 1 1,
Start(P1, win) ,/.I\‘Start(Pl, win) Ut : Lock(P1)
I\I

PUT .
|

PUT 1
. \ : . Unlock(P1) |.\|
Comp(P1, win) ’\./,Comp(Pl, win) | I/I PUT
. A ; ' ' Unlock(P1)
Wait(PO & P2, win) ! X

Min Si msi@anl.gov "

Argonne National Laboratory, The University of Tokyo

b

[Correctness Challenge 1]
Lock Permission Management for Shared Ghost Processes (1)

\ |
w

1. Two origins access two targets sharing the same ghost process

[POOR PERF.] Two concurrent lock epochs have to be serialized

P2

P3

Lock (PO, win)

Unlock(PO, win)

Lock (P1, win)

Unlock(P1, win)

P2
Lock (GO, win)
» N B
Unlock(GO, win) P3
Serialized Lock (GO, win)

Unlock(GO, win)

2. An origin accesses two targets sharing the same ghost process
[INCORRECT] Nested locks to the same target

Lock (PO, win)
Lock (P1, win)

Unlock(PO, win)
Unlock(P1, win)

»

Min Si msi@anl.gov

Argonne National Laboratory, The University of Tokyo

Lock (GO, win)
Lock (GO, win)

MPI standard:
x An origin cannot nest
G1
locks to the same R F

target

12

\ |
w

[Correctness Challenge 1]
Lock Permission Management for Shared Ghost Processes (2)

= Solution

— N Windows

* N = max number of processes on every node

e COMM. to iy, user process on each node goes to iy, window

WIN[0] WIN[1]
0 1 2 0 1 2
3 G1
e U - Y -

= User hint optimization
— Window info “epochs_used” (fence|pscw |lock]|lockall by default)

e |f “epochs_used” contains “lock”, create N windows

e Otherwise, only create a single window

Min Si msi@anl.gov 13

Argonne National Laboratory, The University of Tokyo

b

w
[Correctness Challenge 2] Self Lock Consistency (1)

PO
, MPI standard:

Lock (PO, win) Local lock must be acquired immediately

x=1

y=2

‘ Lock (GO, win) MPI standard:
Unlock(PO, win) XRemote lock may be delayed..
Unlock(GO, win)

14

a Min Si msi@anl.gov
Argonne National Laboratory, The University of Tokyo

\ |
w

[Correctness Challenge 2] Self Lock Consistency (2)

= Solution (2 steps)
1. Force-lock with HIDDEN BYTES™

Lock (GO, win)
Get (GO, win)
Flush (GO, win) | // Lock is acquired

2. Lock self

Lock (PO, win) // memory barrigr for managing
// memory consistency

= User hint optimization

— Window info no_local_loadstore

e Do not need both 2 steps

— Epoch assert MPI_MODE_NOCHECK
* Only need the 2_, step

* MPI standard defines unnecessary restriction on concurrent GET and accumulate.

a Min Si msi@anl.gov See MPI Standard Version 3.0, page page 456, line 39. 15

Argonne National Laboratory, The University of Tokyo

\ |
w

[Correctness Challenge 3]
Managing Multiple Ghost Processes (1)

1. Lock permission among multiple ghost processes
[INCORRECT] Two EXCLUSIVE locks to the same target may be concurrently acquired

P2

Lock (EXCLUSIVE, PO, win)
PUT(PO)
Unlock(PO, win)

Serialized

Lock (EXCLUSIVE, PO, win)
PUT(PO)
Unlock(PO, win)

P2 ‘ P3 ‘

Lock (EXCLUSIVE, GO, win)
Lock (EXCLUSIVE, G1, win)

// get GO
G = randomly_pick_ghost();

PUT(G)

Lock (EXCLUSIVE, GO, win)
Lock (EXCLUSIVE, G1, win)

// get G1
G = randomly_pick_ghost();
PUT(G)

Min Si msi@anl.gov

° Argonne National Laboratory, The University of Tokyo

x Empty lock can be ignored,

P2 and P3 may concurrently
acquire lock on G0 and G1

16

N |
w
[Correctness Challenge 3]

Managing Multiple Ghost Processes (2)

2. Ordering and Atomicity constraints for Accumulate operations

[INCORRECT] Ordering and Atomicity cannot be maintained by MPI among multiple
ghost processes

GET_ACC (x, v, P1)'
ACC (x, P1) i=—

MPI standard:
Same origin && same target location
accumulates must be ordered

y=4
(correct result is 2)

ACC (x, P1)
ACC (x, P1)

541 ! X=5+2 target location must be atomic per
=T basic datatype element.

|
|
|
|
|
|
|
| |
I 4 |5 x MPI standard:
:rea X : dx= Concurrent accumulates to the same
read x=5
: >
I
|
|
|
|

Min Si msi@anl.gov 17

Argonne National Laboratory, The University of Tokyo

Y

w
[Correctness Challenge 3]

Managing Multiple Ghost Processes (3)

= Solution (2 phases)
1. Static-Binding Phase
e Rank binding model

— Each user process binds to a single ghost process
Segment binding model

— Segment total exposed memory on each node into
N chunks

— Each chunk binds to a single ghost process

Only redirect RMA operations to the bound ghost process
e Fixed lock and ACC ordering & atomicity issues

e But only suitable for balanced communication patterns

.~ Optimization for dynamic communication patterns

2. Static-Binding-Free Phase

e After operation + flush issued, “main lock” is acquired
e Dynamically select target ghost process

e Accumulate operations can not be “binding free” Binding Free

Min Si msi@anl.gov

Argonne National Laboratory, The University of Tokyo

Lock(GO, G1) 1

PUT(GO)
Flush(GO0)

1

1

|

|

Acquired main lock I
1

1

|

Unlock(GO, G1) |

oo il o1

PO P1 (P2 P3

Static-rank-binding

o il

PO 1 P3

Static-segment-binding

P1

ﬂ
=

—y
o

\ |
w

[Correctness Challenge 4]
Multiple Simultaneous Epochs — Active Epochs (1)

Simultaneous fence epochs on disjoint sets of processes sharing the
same ghost processes

[INCORRECT] Deadlock !

- aan B
Fence(win0) | : ! !
Epoch 1 : ¢ :
poc Fence(win1) : !
Fence(win0) I -’ : ’
? : I Epoch 2
: P ;

Fence(winO) *Blocke 1

Fenceswlnl) \.!“
I
I
I
I

Blocked x DEADLOCK !

Min Si msi@anl.gov 19
a g

Argonne National Laboratory, The University of Tokyo

G1
g.
|
|
|
|
|
ﬁ

\ |
w

[Correctness Challenge 4]
Multiple Simultaneous Epochs - Active Epochs (2)

= Solution

— Every user window has an internal “global window”

— Translate to passive-target mode
Performed on user processes

— Fence
Win_allocate Win_allocate
Lock_all (global win)
Fence(winO0) Flush_all (global win) + Barrier(COMM _USER_WORLD) + Win_sync
PUT(P) PUT(G)
Fence(win) Flush_all (global win) + Barrier(COMM_USER_WORLD) + Win_sync
[Performance issue 1] l [Performance issue 3]
User hint]
MP'_MODE_NOPRECEDE [Performance Issue 2]
avoids it User hint (NOSTORE & NOPUT &
NOPRECEDE) avoids it
Win_free Unlock_all (global win)
Win_free

— PSCW =) Flush + Send-Receive

Min Si msi@anl.gov 20

Argonne National Laboratory, The University of Tokyo

Y

Argon ne°

NATIONAL LABORATORY

Evaluation

1. Asynchronous Progress Microbenchmark

2. NWChem Quantum Chemistry Application

Experimental Environment

* NERSC's newest supercomputer *

(_#¥ THE UNIVERSITY OF TOKYO * Cray XC30
* https://www.nersc.gov/users/computational-systems/edison/configuration/

.,‘"“, \\1\ U.S. DEPARTMENT OF 21
.9/ ENERGY

\ |
w

Asynchronous Progress Microbenchmark

RMA implementation in Cray MPI v6.3.1 Test scenario
Lock_all (win);
Original mode NONE Thread OP(dst, double, cnt =1, win);
. Flush(dst, win);
DMAPP mode Contig. PUT/GET Interrupt busy wait 100us; /*computing*/
}
Unlock_all (win)

Accumulate on Cray XC30 (SW) PUT on Cray XC30 (HW in DMAPP mode)
60 53-16 18 1704
Z e «==Qriginal MPI 51 «=t=Qriginal MPI Vo
E «{@=Thread-based async £ ={I=Thread-based async /1n —a
v 40 v 12
§ e=¥= DMAPP (Interrupt-based async) 'g 9 e DMAPP (HW PUT)
~ 30
o = Casper iy = Casper
? 20 g 6 7.07
[} [}
2 10 3: 3
0 - : 0 -
2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256
Number of Application Processes (ppn=1) Number of Application Processes (ppn=1)
Casper provides asynchronous progress for Casper does not affect the performance of
SW-handled ACC. HW PUT
a Min Si msi@anl.gov 22

Argonne National Laboratory, The University of Tokyo

L

NWChem Quantum Chemistry Application (1)

= Computational chemistry application suite
composed of many types of simulation capabilities.

= ARMCI-MPI (Portable implementation of Global
Arrays over MPI RMA)

= Focus on most common used CC (coupled-cluster)
simulations in a C,, molecules

foriin | blocks:
forj in J blocks:
F for k in K blocks:
»® — GET block a from A
GET block b from B
c +=a* b /*computing*/
\ GET GET Accumulate end do
lock a block b block ¢ ACC blockcto C
end do
» ! - end do
Perform DGEMM in local buffer Get-Compute-Update model
Min Si msi@anl.gov 23

b

Argonne National Laboratory, The University of Tokyo

\ |
w

Evaluation 2. NWChem Quantum Chemistry Application (2)

CCSD iteration in CCSD task
= |nput data file : tce.c20 triplet 60

™ 0
50 —vé— S
T4 '
" o n é J

— 12-core Intel Iyy Bridge" (24 cores per node) < 30

0 £ 20 -
-

10 -
O i

= Platform Conﬁgurjation:

1440 1920 2400 2800
Number of Cores

Core deployment Casper ASYNC. Progress helps CCSD performance

COMP. # ASYNC. 80

(T) portion in CCSD (T) task

N

Original MPI 24 0 ©

60 -
Casper 20 4 £

£ 40

Thread-ASYNC 24 24 2
(oversubscribed) = o0 -
Thre?d-ASYNC 12 12 0 -
(dedicated) 1440 1920 2400 2800

Number of Cores

More compute-intensive than CCSD, more improvement
Min Si msi@anl.gov 24

Argonne National Laboratory, The University of Tokyo

b

Summary

= MPI RMA communication is not truly one-sided

— Still need asynchronous progress

— Additional overhead in thread / interrupt-based approaches
= Multi- / Many-Core architectures

— Number of cores is growing rapidly, some cores are not always busy

= Casper: a process-based asynchronous progress model
— Dedicating arbitrary number of cores to ghost processes
— Mapping window regions from user processes to ghost processes
— Redirecting all RMA SYNC. & operations to ghost processes

— Linking to various MPI implementation through PMPI transparent
redirection

Download slides: http://sudalab.is.s.u-tokyo.ac.jp/~msi/pdf/ipdps2015-casper-slides.pdf
Min Si msi@anl.gov 25

Argonne National Laboratory, The University of Tokyo

Y

