
Casper: An Asynchronous Progress Model for MPI RMA on Many-Core
Architectures

Min Si,∗ Antonio J. Peña,† Jeff Hammond,‡ Pavan Balaji,† Masamichi Takagi,§ Yutaka Ishikawa§

∗University of Tokyo, Japan msi@il.is.s.u-tokyo.ac.jp
†Argonne National Laboratory, USA {apenya, balaji}@mcs.anl.gov

‡Intel Labs, USA jeff hammond@acm.org
§RIKEN AICS, Japan {masamichi.takagi, yutaka.ishikawa}@riken.jp

Abstract—In this paper we present “Casper,” a process-based
asynchronous progress solution for MPI one-sided communi-
cation on multi- and many-core architectures. Casper uses
transparent MPI call redirection through PMPI and MPI-
3 shared-memory windows to map memory from multiple
user processes into the address space of one or more ghost
processes, thus allowing for asynchronous progress where
needed while allowing native hardware-based communication
where available. Unlike traditional thread- and interrupt-based
asynchronous progress models, Casper provides the capability
to dedicate an arbitrary number of ghost processes for asyn-
chronous progress, thus balancing application requirements
with the capabilities of the underlying MPI implementation.
We present a detailed design of the proposed architecture
including several techniques for maintaining correctness per
the MPI-3 standard as well as performance optimizations
where possible. We also compare Casper with traditional
thread- and interrupt-based asynchronous progress models and
demonstrate its performance improvements with a variety of
microbenchmarks and a production chemistry application.

Keywords-MPI ghost process; one-sided communications;
RMA; multi-core; many-core; asynchronous progress;

I. INTRODUCTION

The MPI-2 and MPI-3 standards [1] introduced one-
sided communication semantics (also known as remote
memory access or RMA) that allow one process to specify
all communication parameters for both the sending and
receiving sides. Thus, a process can access memory regions
of other processes in the system without the target process
explicitly needing to receive or process the message. RMA
provides an alternative model to traditional two-sided or
group communication models and can be more natural for
some applications to use [2].

While the RMA model is useful for a number of com-
munication patterns, the MPI standard does not guarantee
that such communication is asynchronous. That is, an MPI
implementation might require the remote target to make
MPI calls in order to ensure communication progress to
complete any RMA operations issued on it as a target.
This requirement is common in many MPI implementations.
Specifically, most network interfaces do not natively support
complex one-sided communication operations. For example,
networks such as InfiniBand provide contiguous PUT/GET
operations only in hardware. Thus, any contiguous PUT/

GET MPI RMA communication can be implemented almost
entirely in hardware, allowing the hardware to fully handle
its progress semantics. On the other hand, if the application
developer wants to do an accumulate operation on a 3D
subarray, for instance, such an operation must be done in
software within the MPI implementation. Consequently, the
operation cannot complete at the target without explicit
processing in software and thus may cause arbitrarily long
delays if the target process is busy computing outside the
MPI stack.

To ensure asynchronous completion of operations (i.e.,
“asynchronous progress”), traditional implementations have
relied on two models. The first is to utilize background
threads [3] dedicated to each MPI process in order to handle
incoming messages from other processes (e.g., used by most
MPI implementations including MPICH [4], MVAPICH [5],
Intel MPI [6], and IBM MPI on Blue Gene/Q [7]). While this
model is a generic approach for all communication models,
it has several drawbacks. For example, it is limited with the
address space sharing that the operating system provides.
Specifically, a background thread can make progress for only
one MPI process (i.e., the process to which it belongs) and
thus requires at least as many background threads as the
number of MPI processes. On current MPI implementations,
where the MPI library polls on the network to look for
messages, this approach can waste half the hardware threads
or cores. Furthermore, this model forces multithreaded com-
munication overhead on all MPI operations, which can be
expensive [8].

The second model is to utilize hardware interrupts to
awaken a kernel thread and process the incoming RMA
messages within the interrupt context (e.g., used by Cray
MPI [9] and IBM MPI on Blue Gene/P [10, Chapter 7]).
While this model does not have the large number of wasted
cores or multithreaded communication overhead of the back-
ground thread approach, it is limited in that each message
that requires target-side processing generates an interrupt,
which can be expensive. Perhaps more fundamental, the
model of hardware interrupts is centered on the notion
that all hardware resources are busy with user computation,
which needs to be interrupted to inject computation related
to asynchronous progress. We believe this is not the right

point of view for modern many-core architectures where the
number of cores is very large.

In this paper we present “Casper,” a process-based asyn-
chronous progress solution for MPI on multi- and many-
core architectures. An alternative to traditional thread- and
interrupt-based models, Casper provides a distinct set of
benefits for applications, which we believe are more appro-
priate for large many-core architectures. Unlike traditional
approaches, the philosophy of the Casper architecture is
centered on the notion that since the number of cores in
the system is growing rapidly, dedicating some of the cores
for helping with asynchronous progress might be better
than using an interrupt-based shared-mode model. Similarly,
the use of processes rather than threads allows Casper
to control the amount of sharing, thus reducing thread-
safety overheads associated with multithreaded models, as
well as to control the number of cores being utilized for
asynchronous progress.

The central idea of Casper is the ability of processes to
share memory by mapping a common memory object into
their address spaces by using the MPI-3 shared memory
windows interface. Specifically, Casper keeps aside a small
user-specified number of cores on a multi- or many-core
environment as “ghost processes.” When the application pro-
cess tries to allocate a remotely accessible memory window,
Casper intercepts the call and maps such memory into the
ghost processes’ address space. Casper then intercepts all
RMA operations to the user processes on this window and
redirects them to the ghost processes instead.

Since the user memory regions are not migrated or copied
but just mapped into the ghost processes’ address space,
RMA operations that are implemented in hardware see no
difference in the way they behave. On the other hand,
RMA operations that require remote software intervention
can be executed in the ghost processes’ MPI stack on the
additional cores kept aside by Casper, without requiring any
intervention from the application processes.

Although the core concept of Casper is straightforward,
the design and implementation of such a framework must
take several aspects into consideration. Most important, the
framework needs to ensure that correctness is maintained
as required by the MPI-3 semantics. While this task is
easy to manage for simple applications, the wide variety
of communication and synchronization models provided by
MPI can make the task substantially more complex for
applications that are nontrivial. This task is even more
complicated for applications that use multiple MPI-3 epoch
types (e.g., passive-target and active-target) or multiple win-
dows of remote memory buffers because the same Casper
ghost processes need to maintain progress on all of them,
thus essentially requiring that they never indefinitely block
inside an MPI operation. Furthermore, when more than
one ghost process is present, the Casper architecture must
ensure that the ordering, atomicity, and memory consistency

requirements specified by the MPI-3 standard are met in a
way that is transparent to the application.

The Casper architecture hides all this complexity from the
user and manages it internally within its runtime system.
In some cases, however, such complexity can cause perfor-
mance overhead. In this paper we present various techniques
we used to ensure correctness while retaining the perfor-
mance of the RMA operations and enabling low-overhead
asynchronous progress. In addition to a detailed design of
the Casper architecture, we present experiments evaluating
and analyzing Casper with various microbenchmarks and a
large quantum chemistry application.

Recommended reading: While this paper provides some
information on the MPI RMA semantics, it is not meant to
be a comprehensive description. In order to better understand
the subtle characteristics and capabilities of MPI RMA
on which this paper relies, we highly recommend reading
past papers and books that more thoroughly discuss these
semantics (e.g., [11], [12]).

II. CASPER DESIGN OVERVIEW

Casper is designed as an external library through the PMPI
name-shifted profiling interface of MPI. This allows Casper
to transparently link with various MPI implementations,
by overloading the necessary MPI functions. Casper pro-
vides three primary functionalities: (1) deployment of ghost
processes to help with asynchronous progress, (2) RMA
memory allocation and setup, and (3) redirection of RMA
communication operations to appropriate ghost processes.

A. Deployment of Ghost Processes

Ghost processes in Casper are allocated in two steps.
In the first step, when the user launches the application
with a number of processes, a user-defined subset of these
processes is carved aside as the ghost processes at MPI ini-
tialization time (see Figure 1). The remaining processes form
their own subcommunicator called COMM USER WORLD.
The number of ghost processes is user-defined through an
environment variable, allowing the user to dedicate an arbi-
trary number of cores on the node for the ghost processes.

Node 0 Node 1

P0 P1 P2 P3 P4 P5 P6

P0 P1 P2 P3 P4 COMM_USER_WORLD

MPI_COMM_WORLD

Figure 1. Casper ghost process management.

In the second step, Casper overrides all MPI operations
that take a communicator argument and replaces any occur-
rence of MPI COMM WORLD in all non-RMA functions
with COMM USER WORLD at runtime through PMPI redi-
rection. This step ensures that all non-RMA communication

is redirected to the correct MPI processes, including creation
of other subcommunicators from MPI COMM WORLD.

After initialization, ghost processes simply wait to receive
any commands from user processes in an MPI RECV loop.
This approach ensures that while the ghost processes are
waiting for commands, they are always inside the MPI
runtime, thus allowing the MPI implementation to make
progress on any RMA operations that are targeted to those
ghost process.

One aspect to consider in Casper is the locality of applica-
tion buffers relative to the ghost processes. Specifically, since
a ghost process might be depositing or reading data from the
application buffers, how far the ghost process is compared
with the buffers can have a serious impact on performance.
To handle this issue, we ensure that the ghost processes
in Casper are topology-aware. Casper internally detects the
location of the user processes and places its ghost processes
as close to the application process memory as possible. For
example, if a node has two NUMA domains and the user
requests two ghost processes, each of the ghost processes
places itself in a different NUMA domain and binds itself to
either the process ranks or segments in that NUMA domain.

B. RMA Memory Allocation and Setup

Remote memory allocation in the Casper architecture
is tricky in that the allocated memory must be acces-
sible by both the application processes and the ghost
processes. MPI provides two broad mechanisms to de-
clare a memory region as remotely accessible. The first
is an “allocate” model (i.e., MPI WIN ALLOCATE and
MPI WIN ALLOCATE SHARED) in which MPI is re-
sponsible for creating such memory, thus allowing the
MPI implementation to optimize such allocation (e.g.,
through shared memory or globally symmetric virtual mem-
ory allocation). The second is a “create” model (i.e.,
MPI WIN CREATE and MPI WIN CREATE DYNAMIC),
in which the user allocates memory (e.g., using malloc)
and then exposes the memory as remotely accessible.

While memory sharing between the application processes
and the ghost processes can occur in both models, doing
so in the “create” model requires OS support to expose
such capability. This capability is generally present on large
supercomputers such as Cray (e.g., through XPMEM [13]
or SMARTMAP [14]) and Blue Gene, but not always
on traditional cluster platforms. Thus, for simplicity, we
currently support only the “allocate” model.

When the application creates an RMA window using
MPI WIN ALLOCATE, Casper follows a three-step process:

1) It first allocates a shared-memory region between the
user processes and the ghost process on the same node
using the MPI-3 MPI WIN ALLOCATE SHARED
function, as depicted in Figure 2. As shown in the
figure, the same memory region that is used by the
application is also mapped onto the address space of

Ghost Process P0 P1
P0 offset

P1 offset
Applica'on	
Processes

Figure 2. Casper RMA Buffer Mapping

the ghost process. Thus, such memory is accessible
through either process, although care must be taken to
keep it consistent.

2) Once the shared memory is allocated, it creates a num-
ber of internal windows using MPI WIN CREATE to
expose this memory to all user and ghost processes.

3) Casper creates a new window with the same memory
region that contains only the user processes; it then
returns the new window handle to the application.

We note that the Casper architecture exposes the allo-
cated shared-memory in multiple overlapping windows. This
model provides Casper’s runtime system with enough flex-
ibility to manage permissions and communication aspects
in a highly sophisticated manner; but at the same time the
model requires extreme caution to ensure that memory is
not corrupted and is consistent with the user’s expectation.
In Section III, we describe how these internal windows are
utilized in Casper.

C. RMA Operation Redirection

Once the window becomes ready, Casper transparently
redirects, through PMPI redirection, all user RMA oper-
ations to the ghost processes on the target node. Such
redirection needs to translate both the target rank that the
RMA operation is addressed to and the target offset where
the data needs to be written to or read from (since the
offset in the ghost process’s memory region might not be
the same as the offset in the user process’s memory region).
For example, based on Figure 2, if an origin process does
an RMA operation at offset “X” of user process P1, Casper
will redirect the operation to offset “X + P1’s offset in the
ghost process address space” on the ghost process.

When multiple ghost processes are available on the target
node, Casper attempts to utilize all of them by spreading
communication operations across them. This approach al-
lows the software processing required for these operations
to be divided between the different ghost processes, thus
improving performance. Using such a model with multiple
ghost processes, however, requires extra care compared with
using a model with a single ghost process. Moreover, it
raises a number of correctness issues, as we discuss in
Section III-B.

III. ENSURING CORRECTNESS AND PERFORMANCE

In this section we discuss several cases that we need
to handle inside Casper in order to maintain correctness
as specified in the MPI-3 standard while achieving high
performance.

With respect to performance optimizations, some of the
proposed optimizations are automatically detected and han-
dled by the Casper implementation, while some others are
based on user hints in the form of either info hints or assert
hints, as specified by the MPI standard. Both info and assert
hints are, in essence, user commitments to comply with
different restrictions that allow the MPI implementation to
potentially leverage different optimizations. Specifically, info
hints are broad-sweeping and apply to an entire window and
all operations issued on that window. Further, info hints are
extensible so each MPI implementation can add newer hint
capabilities to improve its own performance. assert hints,
on the other hand, are more focused in scope and typically
apply to each epoch. They are also not as easily extensible
to MPI implementation-specific hints.

The info hints used in Casper are not defined by the MPI-3
standard and are Casper-specific extensions. In contrast, the
assert hints used in Casper all are MPI-3 standard defined
hints that we reuse with the same semantics as the standard.
Thus, hints are compatible with other MPI implementations
as well, even though some MPI implementations might not
choose to take advantage of them.

A. Lock Permission Management for Shared Ghost Pro-
cesses

Consider an environment where multiple application pro-
cesses reside on different cores of the same node and thus
share a ghost process. In this case, all RMA communication
to these application processes would be funneled through
the same ghost process. In such an environment if an
origin wanted to issue an exclusive lock to more than one
application process on the same node, such a step would
result in multiple exclusive lock requests being sent from
the origin to the same ghost process. This is disallowed
by the MPI standard—an origin cannot nest locks to the
same target. Similarly, if two origin processes issue exclusive
locks to different application processes on the same node,
this would result in multiple exclusive lock requests being
sent from different origins to the same ghost process. While
this is correct according to the MPI standard, it would
result in unnecessary serialization of all exclusive locks
to processes on the same node, thus hurting performance
significantly.

To overcome this issue, Casper internally maintains sepa-
rate overlapping windows for each user process on the node.
In other words, if a ghost process is supporting N user pro-
cesses, it will create N overlapping windows. Communica-
tion to the ith user process on each node goes through the ith
window. Thus, the number of internal overlapping windows

created is equal to the maximum number of user processes
on any node of the system. Such overlapping windows allow
Casper to carefully bypass the lock permission management
in MPI when accessing different processes but to still take
advantage of them while accessing the same process. Since a
single RMA communication operation cannot target multiple
processes at the same time, we never run into a case where
the bypassing of permission management across processes
causes an issue.

While this approach ensures correctness, it can be ex-
pensive for both resource usage and performance. To al-
leviate this concern, we allow the user to use the info
hint epochs_used to specify a comma-separated list of
epoch types that the user intends to use on that window.
The default value for this info key is all epoch types (i.e.,
“fence,pscw,lock,lockall”); but if the user sets this value
to a subset that does not include “lock,” Casper can use
that information to create only a single overlapping window
(apart from the user-visible window) for all its internal
operations and reduce any overhead associated with lock
permission management.

B. Managing Multiple Ghost Processes

In Casper, the user is allowed to configure a node with
multiple ghost processes. Doing so allows better sharing
of work when the number of operations requiring such
asynchronous progress is large. However, such a configura-
tion requires additional processing to maintain correctness.
A simple model in which all communication is randomly
distributed across the different ghost processes has two
issues that need to be handled: (1) lock permissions in the
lock-unlock epoch and (2) ordering and atomicity constraints
for accumulate operations.

When the lock-unlock epoch type is used, Casper will
internally lock all ghost processes on a node, when a lock
operation for a particular application process is issued, in
the hope of spreading communication across these ghost
processes. In practice, however, many MPI implementations
might not acquire the lock immediately, instead delaying
them to a future time (e.g., when an RMA communication
operation is issued to that target). Given this behavior,
consider an application that simply does one lock-put-unlock.
In this example, Casper might randomly pick a ghost pro-
cess, thus picking one ghost process on one origin while
picking a different ghost process on another origin. For
implementations that delay lock acquisition, this example
would mean that the two ghost processes would get exclusive
locks from two different origins to access the same memory
location. Since the lock management in MPI is unaware of
the shared-memory buffers in Casper, both exclusive locks
would be granted, resulting in data corruption.

The second issue concerns the atomicity and ordering
guarantees provided by the MPI standard for concurrent
accumulate operations to the same location (see [1], Section

11.7.1). Each basic datatype element of concurrent accu-
mulate operations issued by the same or different origin
processes to the same location of a target process must be
performed atomically. Similarly, two accumulate operations
from the same origin to the same target at the same memory
location are strictly ordered. In Casper, if a user process is
served by a single ghost process, such atomicity is already
provided by the MPI implementation. If a user process is
served by multiple ghost processes, however, they might
simultaneously be accessing the same memory region, thus
breaking both atomicity and ordering.

To address these issue, Casper uses a two-phase solu-
tion. The first phase is to provide a base “static binding”
model in which each ghost process is statically assigned to
manage only a subset of the remotely accessible memory
on the node. This model ensures correctness as per the
MPI standard but can have some performance cost. We
propose two static binding approaches in this paper: rank
binding and segment binding. The second phase is to identify
periods in the application execution where the issuing of
some operations to ghost processes can be done in a more
dynamic fashion. In this section, we discuss both phases.

1) Static Rank Binding: With rank binding, each user
process binds to a single ghost process, and any RMA
operations issued to that user process are always directed
to that ghost process. Therefore, different origins locking
the same target are redirected to the same ghost process,
thus benefiting from MPI’s internal permission management.
Similarly, different accumulate operations targeting the same
user process are redirected to the same ghost process, thus
benefiting from MPI’s internal ordering and atomicity man-
agement. This model completely works around the problem
with multiple ghost processes since each user application
process is associated with only a single ghost process. The
disadvantage of this approach, however, is that if the amount
of communication to the different user application processes
is not uniform, one ghost process might get more work than
the others get, thus causing load imbalance.

2) Static Segment Binding: With segment binding, the
total memory exposed by all the processes on the node is
segmented into as many chunks as the number of ghost pro-
cesses, and each chunk or segment is bound to a single ghost
process. Thus, given a particular byte of memory, a single
ghost process “owns” it. When the user application issues a
lock operation, Casper will still lock all ghost processes; but
when the actual RMA communication operation is issued,
it is redirected to the appropriate ghost processes that own
that segment of the memory. In this model different origin
processes can get simultaneous access to the same target
through different ghost processes. However, they cannot si-
multaneously update the same memory region, thus making
such shared access inconsequential and still guaranteeing
application correctness.

A second aspect that must be considered in segment

binding is that segmentation must be at a basic-datatype-
level granularity in order to maintain MPI’s requirements for
atomicity. To handle this, we must ensure that segments are
divided at an alignment of the maximum size of MPI basic
datatypes (i.e., 16 bytes for MPI_REAL). This alignment
is needed in order to guarantee that no basic datatype is
divided between two ghost processes. Thus, although an
operation may be divided into multiple chunks and issued to
different ghost processes, each basic datatype unit belongs
to a single chunk and is directed to a single ghost process,
thus guaranteeing atomicity and ordering. This approach
will work in most cases since most compilers enable data
alignment by default (i.e., a double variable has to be
allocated on an address that is a multiple of eight). Hence, it
is safe to divide an operation into different aligned segments.
We note, however, that this approach is not strictly portable.
Compilers are allowed to not enforce data alignment or allow
users to explicitly disable structure padding, resulting in
unsafe segmentation. Nevertheless, data alignment is always
recommended for performance; and some architectures, such
as SPARC [15], even require it for correctness.

The advantage of the static segment binding model com-
pared with the static rank binding model is that the load
on a given ghost process is determined by the memory
bytes it has access to, rather than the process it is bound
to. In some cases, such a model can provide better load
balancing than the static rank binding model. However, the
static segment binding model has several disadvantages.
Most important, this solution relies on analyzing the specific
bytes on the target process that are being accessed for each
RMA operation. For operations using contiguous datatypes
that completely fall within one data segment, this model can
be straightforward, since the operation is simply forwarded
to the appropriate ghost process. If the data overlaps two or
more segments, however, Casper must internally divide the
operation into multiple operations issued to different ghost
processes. This solution becomes even more complex when
the data being transmitted is noncontiguous, in which case
the datatype needs to be expanded and parsed before the
segments it touches can be determined.

3) Dynamic Binding: In applications that have balanced
communication patterns, each target process on a compute
node tends to receive an approximately equal number of
RMA operations. The best performance can be achieved
for such patterns by equally distributing the number of
processes handled by each ghost process. In such cases, a
static binding approach might be a good enough solution
for load balancing. For applications with more dynamic
communication patterns, however, a more dynamic selection
of ghost processes is needed, as long as such an approach
does not violate the correctness requirements described
above.

In Casper, to help with dynamic binding, we define
“static-binding-free” intervals of time. For example, suppose

the user application issues a lock operation to a target. This
lock would be translated to a lock operation to the corre-
sponding ghost process to which the target process is bound.
After issuing some RMA communication operations, if the
user application flushes the target, the MPI implementation
must wait for the lock to be acquired and cannot delay the
process of lock acquisition any further. The period after
the flush operation has completed and before the lock is
released is considered a “static-binding-free” period. That
is, in this period we know that the lock has already been
acquired. In such periods, the Casper implementation no
longer has to do lock permission management and is free
to load balance PUT/GET operations to any of the ghost
processes with the same lock type as that specified by the
user application process. We note that this optimization
is not valid for accumulate-style operations, in order to
maintain the atomicity and ordering guarantees specified by
the MPI standard.

We utilize three dynamic load-balancing approaches in
Casper. The first is a “random” algorithm that randomly
chooses a ghost process from the available ghost processes
for each RMA operation. The second is an “operation-
counting” algorithm that chooses the ghost process that the
origin issued the least number of operations to. The third is
a “byte-counting” algorithm that chooses the ghost process
that the origin issued the least number of bytes to.

C. Dealing with Multiple Simultaneous Epochs

The MPI standard does not allow a process to simultane-
ously participate in multiple overlapping epoch types on a
given window. However, for disjoint sets of processes or for
the same set of processes with different windows, no such
restrictions exist. Thus, one could imagine an application in
which a few of the processes are participating in a lock-
unlock epoch on one window, while another disjoint set
of processes is participating in a fence epoch on another
window. If more than one of these processes are on the same
node, the ghost processes have to manage multiple simulta-
neous epochs. The primary difficulty with handling multiple
simultaneous epochs, especially active target epochs such as
fence and PSCW, is that the epoch opening and closing calls
in these epochs are collective over either all or a subset of
processes in the window and these calls are blocking with no
nonblocking variants. Thus, if a ghost process participates in
one epoch opening or closing call, it is stuck in a blocking
call and hence loses its ability to help with other epochs for
other user processes.

To work around this issue, Casper converts all active-
target epochs into passive-target epochs on a separate win-
dow. Further, it manages permission conflicts between lock-
all and lock by converting lockall to a collection of lock
operations in some cases. The following paragraphs describe
these changes in more detail.

1) Fence: The fence call supports a simple synchroniza-
tion pattern that allows a process to access data at all
processes in the window. Specifically, a fence call completes
an epoch if it was preceded by another fence and starts an
epoch if it is followed by another fence.

In Casper, we translate fence to a lockall-unlockall epoch.
Specifically, we use a separate window for fence; and
when the window is allocated, we immediately issue a
lockall operation. When the user application calls fence, we
internally translate it to flushall-barrier, where the flushall
call ensures the remote completion of all operations issued
by that origin and the barrier call synchronizes processes,
thus ensuring the remote completion of all operations by
all origins. This model ensures that the ghost processes
do not need to explicitly participate in any active target
synchronization calls, thus avoiding the blocking call issues
discussed above.

While correct, this model has a few performance issues.
First, a fence call does not guarantee remote completion
of operations. The return of the fence call at a process
guarantees only the local completion of operations issued
by that process (as an origin) and the remote completion
of operations issued to that process (as a target). This
is a weaker guarantee than what Casper provides, which
is remote completion of all operations issued by all pro-
cesses. Casper’s stricter guarantees, while correct, do cost
performance, however. Therefore, such remote completion
through flushall can be skipped if the user provides the
MPI_MODE_NOPRECEDE assert indicating that no oper-
ations were issued before the fence call that need to be
flushed.

Second, an MPI implementation can choose to imple-
ment fence in multiple different ways. For example, one
possible implementation of the fence epoch is to delay all
RMA communication operations to the end of the epoch
and issue them only at that time. Thus, if the MPI im-
plementation knows that a fence call does not complete
any RMA communication operations (e.g., if it is the first
fence), it can take advantage of this information to avoid
synchronizing the processes. Casper does not have this
MPI implementation internal knowledge, however. Thus, it
always has to assume that the MPI implementation might
issue the RMA communication operations immediately, and
consequently it always has to synchronize processes. Again,
doing so costs performance. However, if the user speci-
fies the MPI_MODE_NOSTORE, MPI_MODE_NOPUT, and
MPI_MODE_NOPRECEDE asserts, Casper can skip such
synchronization since there are no store operations before
the fence and no PUT operations after the fence that might
impact the correctness of the data.

Third, when fence is managed by the MPI implemen-
tation, it internally enforces memory consistency through
appropriate memory barriers. In Casper, since the fence
call is translated to passive-target synchronization calls,

such memory consistency has to be explicitly managed.
Thus, during each fence call, we add an additional call to
MPI WIN SYNC to allow such memory ordering consis-
tency, costing more performance.

2) PSCW: The PSCW epoch allows small groups of
processes to communicate with RMA operations. It ex-
plicitly decouples calls in order to expose memory for
other processes to access (exposure epoch) and calls
to access memory from other processes (access epoch).
The MPI WIN POST and MPI WIN WAIT calls start and
end an exposure epoch, while the MPI WIN START and
MPI WIN COMPLETE start and end an access epoch.

As with fence, we translate the PSCW epoch to passive-
target synchronization calls on the same window (since
fence and PSCW cannot simultaneously occur on the same
window). Also as with fence, we add additional process
synchronization for PSCW in Casper. Instead of using
barrier, however, we use send-recv because the processes
involved might not be the entire group of processes on
the window. Consequently, PSCW encounters the same set
of drawbacks as fence with respect to performance. To
help with performance, we allow the user to provide the
MPI_MODE_NOCHECK assert specifying that the necessary
synchronization is being performed before post and start
calls. When this assert is provided, Casper can drop addi-
tional synchronization.

3) Lockall: The lockall epoch is a passive-target epoch
and thus does not require participation from the ghost
processes. However, we need to be careful that we do not
bypass lock permission requirements when the user uses
both lockall and lock simultaneously from different origin
processes. In this case, as discussed in Section III-A, since
the lock calls are redirected to internal overlapping windows
by Casper, one process of the application might end up
acquiring a lockall epoch while another process of the same
application acquires an exclusive-mode lock epoch on the
same window (we note that the lockall epoch is shared-
mode only and does not have an exclusive-mode equivalent).
This situation is obviously incorrect and can cause data
corruption.

To avoid this, Casper internally converts the lockall epoch
to a series of locks to all ghost processes. Doing so
ensures that any accesses are correctly protected by the
MPI implementation. Arguably, this solution can add some
performance overhead since it serializes lock acquisition.
However, most MPI implementations delay lock acquisition
until an actual operation is issued to that target, so this might
not be much of a concern in practice.

D. Other Considerations

To maintain correctness, we also had to address several
other aspects including self-locks (which are guaranteed
by MPI to not be delayed, in order to support load/store
operations) and memory load/store ordering consistency in

the presence of multiple application and ghost processes.
Because of space limitations, however, we do not describe
them here.

IV. EVALUATION

In this section, we evaluate Casper on two
platforms: the NERSC Edison Cray XC30
supercomputer (https://www.nersc.gov/users/computational-
systems/edison/configuration/) and the Argonne Fusion
cluster (http://www.lcrc.anl.gov/about/fusion). We used
these two platforms to demonstrate the impact of varying
levels of hardware support for RMA operations. Specifically,
Cray MPI (version 6.3.1) can be executed in two modes:
regular or DMAPP-based. The regular version executes all
RMA operations in software with asynchronous progress
possible through a background thread. The DMAPP version
executes contiguous PUTs and GETs in hardware, but
accumulates and noncontiguous operations are executed in
software with asynchronous progress through interrupts.
On the Fusion platform, we used MVAPICH. MVAPICH
(version 2.0rc11) implements contiguous PUT/GET
operations in hardware, while using software active
messages for accumulates and noncontiguous operations
(asynchronous progress using a background thread).

We expect Casper to improve asynchronous progress
in the cases where RMA operations are implemented as
software active messages and to perform as well as the
original MPI implementation when hardware direct RMA
is used.

A. Overhead Analysis

In this section, we measure two overheads caused by
Casper: (1) window allocation and (2) Fence and PSCW.

As discussed in Section II-B, Casper internally creates
additional overlapping windows in order to manage lock
permissions when a ghost process supports multiple user
processes. These can cause performance overhead. However,
the amount of overhead can be controlled by setting the
info argument epoch_type to tell Casper which epoch
types are used by the application. Accordingly Casper can
decide which internal windows it needs to create. Figure 3(a)
shows the overhead of MPI WIN ALLOCATE on a user
process with varying total numbers of processes on a single
node of Cray XC30. When no info hints are passed (default
epoch_type is “fence,pscw,lockall,lock”), Casper can ex-
perience substantial performance cost in window creation
time. When epoch_type is set to “lock,” Casper does not
have to create the additional window for active target and
lockall communication, thus improving performance a little;
but the cost is still considerable because Casper has to create
one window for every user process on that node. When
epoch_type is set to “lockall” or “fence” (or any other

1We had to fix a bug in MVAPICH to allow for true hardware-based
RMA for PUT and GET.

0

200

400

600

800

2 4 6 8 10 12 14 16 18 20 22

W
in

_a
llo

ca
te

 T
im

e
(u

s)

Number of Local Processes

Original MPI
Casper (default)
Casper (lock)
Casper (lockall)
Casper (fence)

(a) Window allocation overhead.

0

50

100

150

200

250

300

0

200

400

600

800

1000

1200

1 2 4 8 16

32

64

12
8

25
6

51
2

10
24

O

ve
rh

ea
d

Pe
rc

en
ta

ge
 (%

)

Ti
m

e
on

 R
an

k
0

(u
s)

Number of Operations

Fence overhead
PSCW overhead
Original Fence
Original PSCW
Casper Fence
Casper PSCW

(b) Fence and PSCW overhead

Figure 3. Overhead analysis.

value that does not include “lock”), Casper has to create
just one additional internal window, thus reducing the cost
substantially, although the cost is still more than twice that
of original MPI.

The second major overhead occurs because of the con-
version of fence and PSCW to passive-target epochs and
the additional synchronization and memory consistency as-
sociated with it. We measure these overheads by using
two interconnected processes on Cray XC30. The fence
experiment performs fence–accumulate–fence on the first
process and fence–fence on the other, with the first passing
the MPI_MODE_NOPRECEDE assert and the second fence
passing the MPI_MODE_NOSUCCEED assert. The PSCW
experiment performs start–accumulate–complete and post–
wait on the two processes. Figure 3(b) shows the execution
time of our experiments on the first process. While the over-
head is large (100–200%) for a small number of operations,
as the number of operations issued increases, this cost gets
amortized and disappears.

B. Asynchronous Progress

In the section, we demonstrate the asynchronous progress
improvements achieved in various scenarios.

1) Different Synchronization Modes: Our first experi-
ment demonstrates the improvement of computation and
communication overlap in passive and active-target modes
using Casper. Two interconnected processes are used in each
mode. In the passive-target mode, one process issues lockall–

accumulate–unlockall to another process while that process
is blocking in computation. Figure 4(a) shows the results
on the Cray XC30. As expected, with the original MPI
the execution time on the origin increases with wait time
on the target, which means that the origin is blocked by
the computation on the target. All asynchronous progress
approaches relieve this issue. We note, however, that both
the DMAPP and thread approaches have more overhead than
Casper does.

The overhead with using the MPICH asynchronous thread
comes from the expensive thread-multiple safety and lock
contention. DMAPP-based asynchronous progress, however,
does not involve thread-multiple safety and also wakes up
background threads only when a message arrives. Therefore,
to analyze the reason for this overhead, we performed a test
in which one process does lockall–accumulate–unlockall and
the other process does a dgemm computation. As shown in
Figure 4(c), when we increase the number of ACCUMU-
LATEs issued in each iteration, DMAPP’s overhead also
increases. To further analyze this situation, we measured the
number of system interrupts. We found that they increased
with the number of ACCUMULATEs as well and were
clearly becoming a bottleneck with increasing numbers of
operations.

In the active-target mode, since both fence and PSCW
require internal synchronization in Casper, the origin has to
wait for the completion of the epoch on the target. Thus, in
an experiment similar to that for the passive mode, we mea-
sured the time for fence–accumulate–fence on one process
while another process performs fence–100 µs busy waiting–
fence as shown in Figure4(b). We notice that when a small
number of operations are issued during fence, asynchronous
progress is beneficial. But when the communication takes
more time than the delay on the target, which is the
maximum time Casper can overlap (larger than 128 in the
figure), the percentage improvement decreases, as expected.
PSCW follows a similar trend. Both DMAPP and thread
asynchronous progress show significant overhead compared
with that of the original MPI execution.

2) Different RMA implementations: The second experi-
ment focuses on the scalability of asynchronous progress
with different RMA implementations. In this experiment
every process communicates with all the other processes
in a communication–computation–communication pattern.
We use one RMA operation (size of a double) in the
first communication, 100 µs of computation, and ten RMA
operations (each size double) in the second communication.

On Cray XC30, we use one process per node and scale
the number of nodes for both ACCUMULATE and PUT,
as shown in Figures 5(a) and 5(b). We note that DMAPP
enables direct RMA for PUT/GET with basic datatypes in
Cray MPI, but it involves interrupts for ACCUMULATE
operations. Consequently, Casper outperforms the other ap-
proaches for ACCUMULATE, while achieving the same

0

20

40

60

80

100

120

140

1 2 4 8 16 32 64 128

Ti
m

e
on

 R
an

k
0

(u
s)

Wait Time (us)

Original MPI Thread
DMAPP Casper

(a) Passive-target RMA

0

7

14

21

28

35

42

49

0

1

2

3

4

5

6

7

1 2 4 8 16 32 64 128 256 512 1024

Im
pr

ov
em

en
t (

%
)

Ti
m

e
on

 R
an

k
0

(m
s)

Number of Operations

Casper Improvement
Original MPI
Thread
DMAPP
Casper

(b) Fence RMA

0

20000

40000

60000

80000

100000

0

2

4

6

8

10

1 4 16 64 256 1024

In
te

rr
up

ts

Ti
m

e
on

 R
an

k
0

(m
s)

Number of Operations

System Interrupts
Original MPI
DMMAP

(c) Overhead of DMAPP interrupts

Figure 4. Overlap improvement using two interconnected processes on Cray XC30.

performance as that of DMAPP for PUT/GET. The thread
asynchronous progress is always expensive and even worse
than that of the original MPI when a large number of
processes are communicating.

On the Fusion cluster, we compared Casper with MVA-
PICH by also using one process per node. Figure 5(c)
indicates that Casper improves asynchronous progress for
ACCUMULATE, which is still implemented with software
active messages in MVAPICH. The thread asynchronous
progress again shows significant overhead. We also mea-
sured the performance of PUT/GET operations; as expected,
the performance of Casper was identical to that of original
MPI since these operations are implemented directly in
hardware. The performance numbers are not shown here
because of space limitations.

C. Performance Optimization

Our third set of microbenchmarks focuses on the different
load-balancing optimizations discussed in Section III-B.

1) Static Rank Binding: Figure 6 shows our measure-
ments with static rank binding on Cray X30. In the first
experiment (Figure 6(a)) we show the static rank binding
with increasing number of processes when each process
sends one accumulate message (size of double) to every
other process in the system. We use 16 processes per node
and evaluate Casper with up to 8 ghost processes on each
node. Our results indicate that two ghost processes are
sufficient when up to 32 processes communicate; when more
processes communicate, however, configurations with larger
numbers of ghost processes tend to perform better. The
reason is that the number of incoming RMA operations
increases with more processes, thus requiring more ghost
processes computing to keep up.

Figure 6(b) shows a similar experiment but increases the
number of accumulate operations while keeping the user
process count constant at 32 (2 nodes with 16 processes
each). The results show a trend similar to that of the previous
experiment, with more ghost processes benefiting when the
number of operations per process is larger than 8.

2) Static Segment Binding: In this experiment we evalu-
ate the performance of the static segment binding approach.
Such an approach is expected to be especially beneficial

when the application allocates uneven-sized windows and re-
ceives a large number of operations that need to be processed
in software. Figure 6(c) demonstrates this pattern. We used
16 nodes with 16 processes and up to 8 ghost processes per
node. The first process of every node allocates a 4-kilobyte
window (512 count of double), while the others only allocate
16 bytes. Then each process performs a lockall–accumulate–
unlockall pattern on all the other processes. We increase
the number of ACCUMULATEs to each process whose
local rank is 0 while issuing a single operation to other
processes. As shown in the figure, performance improves
with increasing numbers of ghosts, because the large window
is divided into more segments and the communication issued
to different segments is handled by different ghosts.

3) Dynamic Binding: To test our dynamic binding ap-
proaches, we designed three microbenchmarks, all of which
are executed on 16 nodes with 20 user processes and 4 ghost
processes per node.

Figure 7(a) shows the results of an experiment in which all
processes perform a lockall–put–unlockall pattern to all the
other processes, but only the first rank of each node receives
an increasing number of PUT operations (varied on the x-
axis of the graph), while the others receive only one PUT
operation. Our random load balancing simply chooses the
ghost processes in the order of its local rank for each target
process. Thus, all the PUT operations are always equally
distributed to the ghosts on each node achieving much better
performance that with static binding.

Figure 7(b) uses a variant of the previous experiment in
which each process performs an uneven lockall–accumulate–
put–unlockall pattern to all other processes. In this case,
random load balancing arbitrarily picks the ghost process
for each PUT operation but sends all ACCUMULATE opera-
tions to the same ghost process (in order to maintain ordering
and atomicity guarantees). Thus, the ghost process that is
handling both ACCUMULATE and PUT operations would
end up having to handle more operations than would the
other ghost processes. Our “operation-counting” approach,
on the other hand, keeps track of which ghost process
has been issued how many operations and balances the
operations appropriately, thus allowing it to achieve better
performance than the random approach does.

0

10

20

30

40

50

60

2 4 8 16 32 64 128 256

Av
er

ag
e

Ti
m

e
(m

s)

Number of Application Processes (ppn=1)

Original MPI Thread
DMAPP Casper

(a) Accumulate on Cray XC30.

0

4

8

12

16

20

2 4 8 16 32 64 128 256

Av
er

ag
e

Ti
m

e
(m

s)

Number of Application Processes (ppn=1)

Original MPI Thread
DMAPP Casper

(b) Put on Cray XC30.

0

0.5

1

1.5

2

2.5

2 4 8 16 32 64 128 256

Av
er

ag
e

Ti
m

e
(s

)

Number of Processes (ppn=1)

Original MPI Thread
Casper

(c) Accumulate on Fusion using MVAPICH.

Figure 5. Asynchronous progress on different platforms.

0

1

2

3

4

5

0

10

20

30

40

50

16 32 64 128 256 512 1024 2048 4096

Sp
ee

du
p

Av
er

ag
e

Ti
m

e
(m

s)

Numer of Processes (16 processes per node)

 Casper (2 Ghosts) Speedup
 Casper (4 Ghosts) Speedup
 Casper (8 Ghosts) Speedup
Original MPI
 Casper (2 Ghosts)
 Casper (4 Ghosts)
 Casper (8 Ghosts)

(a) Static Rank Binding: Increasing Processes.

0

1

2

3

4

5

6

0

10

20

30

40

50

60

1 2 4 8 16 32 64 128 256 512

Sp
ee

du
p

Av
er

ag
e

Ti
m

e
(m

s)

Number of Operations

 Casper (2 Ghosts) Speedup
 Casper (4 Ghosts) Speedup
 Casper (8 Ghosts) Speedup
Original MPI
 Casper (2 Ghosts)
 Casper (4 Ghosts)
 Casper (8 Ghosts)

(b) Static Rank Binding: Increasing operations.

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

1 2 4 8 16 32 64 128 256 512

Sp
ee

du
p

Av
er

ag
e

Ti
m

e
(m

s)

Number of Operations

 Casper (2 Ghosts) Speedup
 Casper (4 Ghosts) Speedup
 Casper (8 Ghosts) Speedup
Original MPI
 Casper (2 Ghosts)
 Casper (4 Ghosts)
 Casper (8 Ghosts)

(c) Static Segment Binding: Uneven Window Size

Figure 6. Load balancing in static binding on Cray XC30.

Our third experiment, uses yet another variant of the
previous experiments by varying the size of the operations
while keeping the number of operations constant. Each
process performs a lockall–accumulate–put–unlockall pat-
tern, but only the processes whose local rank is 0 receive
increasing sizes of PUTs and ACCUMULATEs (varied on
the x-axis), while the others receive only one double PUT
and accumulate. Figure 7(c) shows the results. As expected,
neither random nor operation-counting algorithms can han-
dle this case well, although our “byte-counting” approach
outperforms both of them.

D. NWChem Quantum Chemistry Application

NWChem [16] is a computational chemistry applica-
tion suite offering many simulation capabilities. For mas-
sively parallel simulations, a common method employed
is coupled-cluster theory (CC), for which NWChem has
extensive functionality [17] and excellent performance [18].
For data movement, NWChem uses the Global Arrays [19]
toolkit, which has been implemented on a number of plat-
forms natively and as a portable implementation over MPI
RMA [2].

Because CC simulations are one of the most common
usages of NWChem in the context of large clusters or
supercomputers, our experiments focus on the most popu-
lar CC method, CCSD(T). Two molecules are considered:
the water cluster (H2O)n (n = 16)—denoted Wn for
short—and C20, obtained from the NWChem QA test suite
(QA/tests/tce_c20_triplet). For the water cluster,
we used double-zeta basis sets (cc-pVDZ from the NWChem
basis set library), which are reasonable for this class of

Table I
CORE DEPLOYMENT IN NWCHEM EVALUATION ON CRAY XC30.

Computing Cores Async Cores
Original MPI 24 0

Casper 20 4
Thread (O) 24 24
Thread (D) 12 12

problems. We compared Casper with both the original MPI
and two thread-based approaches. The first approach em-
ploys oversubscribed cores (Thread (O)), where every thread
and its MPI process execute on the same core; the second
approach uses dedicated cores (Thread (D)), where threads
and MPI processes are on separate cores. We used the same
total number of cores in all approaches, some of which are
dedicated to asynchronous ghost processes/threads as listed
in Table I.

Figures 8(a) and 8(b) report timings for a single iteration
of CCSD, which is a communication-intensive solver com-
posed of more than a dozen tensor contractions of varying
size. For smaller problems, when computation dominates,
asynchronous progress is more important because the appli-
cation is calling MPI relatively infrequently. At larger scale,
the computation time decreases, and the communication is
more frequent; hence the improvement with Casper is less.
The (T) portion of the CCSD(T) methods is much more
compute-intensive. Hence, the time between MPI calls can
be large, and thus the impact of asynchronous progress is
significant. Each process fetches remote data, then does
significant computation—over and over. As a result, the
lack of progress causes processes to stall, waiting on GET

0

1

2

3

4

5

0

40

80

120

160

200

1 2 4 8 16

32

64

12
8

25
6

51
2

10
24

Sp
ee

du
p

Av
er

ag
e

Ti
m

e
(m

s)

Number of PUT issued to every local rank 0

Static Speedup
Random Speedup
Original MPI
Static
Random

(a) Random: Uneven Number of Put.

0

1

2

3

4

5

6

0

60

120

180

240

300

360

1 2 4 8 16 32 64 128 256 512 1024

Sp
pe

du
p

Av
er

ag
e

Ti
m

e
(m

s)

Number of PUT / ACC issued to every local rank 0

Static Speedup
Random Speedup
OP Speedup
Original MPI
Static
Random
OP

(b) OP-counting: Uneven Number of Put/ACC.

0

1

2

3

4

5

0

160

320

480

640

800

1 2 4 8 16

32

64

12
8

25
6

51
2

10
24

20

48

40

96

Sp
ee

du
p

Av
er

ag
e

Ti
m

e
(m

s)

Size of PUT and ACC issued to every local rank 0

Static Speedup
Random Speedup
Byte Speedup
Original MPI
Static
Random
Byte

(c) Byte-counting: Uneven Size of Put/ACC.

Figure 7. Dynamic load balancing on Cray XC30.

operations to be satisfied remotely. Figure 8(c) shows the
significance of asynchronous progress at all scales. Relative
to the original version, Casper is almost twice as fast; but
thread-based asynchronous progress is far less effective.
The reason is that although both approaches improve asyn-
chronous progress in communication, the thread-based solu-
tions significantly degrade the performance of computation,
either by core oversubscription or by appropriation of half
of the computing cores.

V. RELATED WORK

Asynchronous progress in MPI has been previously ex-
plored by the community for both two-sided and one-sided
communication using multiple approaches. Sur et al. [20]
discussed an interrupt-based design to overlap remote direct
memory access read-based rendezvous communication with
computation on InfiniBand networks. Kumar et al. [21]
improved this work by proposing a signal-based approach
to both reduce the number of interrupts and avoid using
locks for shared data.

In one-sided communication, although networks such
as InfiniBand provide contiguous PUT/GET operations in
hardware, noncontiguous data transfers and accumulate op-
erations still require the participation of the target process
to perform an unpacking stage from a contiguous receiving
buffer into the noncontiguous target location. Jiang et al. [3]
proposed a thread-based design to enable asynchronous
progress in communications involving noncontiguous data
types in one-sided networks. Vaidyanathan et al. [22] im-
proved asynchronous progress on Intel Xeon Phi coproces-
sors using a similar approach but were able to minimize
threading overhead by implementing only a subset of the
MPI standard and discarding some requirements of the
standard.

PIOMan [23], a multithreaded communication progres-
sion engine supporting asynchronous progress, divides I/O
communication and rendezvous handshakes into multiple
tasks and offloads them to background threads running on
idle cores in order to overlap communication and computa-
tion. This approach, however, suffers from a nonnegligible
overhead derived from the necessary multithreading safety
mechanisms [24]. In addition, to the best of our knowledge,

the PIOMan project does not target one-sided communica-
tions.

Other research has focused on improving communication
overlap using network hardware features. Santhanaraman
et al. [25] optimized internode one-sided passive-mode
synchronization using InfiniBand atomic operations, thus
providing applications with improved overlap. Realizing that
intranode communication is highly processor demanding,
Zounmevo and Afsahi [26] proposed to overlap intra and
internode one-sided communications by deferring the former
messages falling under a certain message size threshold
to the end of the epoch. By issuing network transfers
to RDMA-assisted networks in first place, the processor-
expensive intranode data movements are can be overlapped
when issuing them subsequently.

VI. CONCLUDING REMARKS

RMA communication allows a process to access memory
regions of other processes without the target process explic-
itly needing to receive or process the message. However, the
MPI standard does not guarantee that such communication is
asynchronous; and some MPI implementations still require
the remote target to make MPI calls in order to ensure
progress on incoming RMA messages. This paper presented
a process-based asynchronous progress approach in which
background ghost processes are employed to assist RMA
operations that require software intervention for progress
on the target side without affecting hardware-based RMA
operations.

ACKNOWLEDGMENTS

This material was based upon work supported by the U.S.
Dept. of Energy, Office of Science, Advanced Scientific
Computing Research (SC-21), under contract DE-AC02-
06CH11357. The experimental resources for this paper were
provided by the National Energy Research Scientific Com-
puting Center (NERSC) on the Edison Cray XC30 super-
computer and by the Laboratory Computing Resource Center
on the Fusion cluster at Argonne National Laboratory.

REFERENCES

[1] “MPI: A Message-Passing Interface Standard,” http://www.
mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf, Sep. 2012.

0
1
2
3
4
5
6
7

600 768 1536 3072

Si
ng

le
 It

er
at

io
n

Ti
m

e
(m

in
)

Number of Cores

Original MPI Casper Thread(O) Thread(D)

(a) CCSD for W16=(H2O)16 with pVDZ

0

1

2

3

1440 1920 2400 2800

Si
ng

le
 It

er
at

io
n

Ti
m

e
(m

in
)

Number of Cores

Original MPI Casper Thread(O) Thread(D)

(b) CCSD for C20 with pVTZ

0

20

40

60

80

1440 1920 2400 2800

(T
) P

or
tio

n
Ti

m
e

(m
in

)

Number of Cores

Original MPI Casper Thread(O) Thread(D)

(c) (T) portion of CCSD(T) for C20 with pVTZ

Figure 8. NWChem TCE coupled cluster methods on Cray XC30.

[2] J. S. Dinan, P. Balaji, J. R. Hammond, S. Krishnamoorthy,
and V. Tipparaju, “Supporting the global arrays PGAS model
using MPI one-sided communication,” in IPDPS, May 2012.

[3] W. Jiang, J. Liu, H.-W. Jin, D. Panda, D. Buntinas, R. Thakur,
and W. Gropp, “Efficient Implementation of MPI-2 Passive
One-Sided Communication on InfiniBand Clusters,” in Euro
PVM/MPI, ser. Lecture Notes in Computer Science, 2004,
vol. 3241, pp. 68–76.

[4] Argonne National Laboratory, “MPICH — High-Performance
Portable MPI,” http://www.mpich.org, 2014.

[5] The Ohio State University, “MVAPICH: MPI over InfiniBand,
10GigE/iWARP and RoCE,” http://mvapich.cse.ohio-state.
edu, 2014.

[6] Intel Corporation, “Intel MPI library,” http://software.intel.
com/en-us/intel-mpi-library, 2014.

[7] S. Kumar and M. Blocksome, “Scalable MPI-3.0 RMA on
the Blue Gene/Q supercomputer,” in Euro MPI, 2014.

[8] W. Gropp and R. Thakur, “Thread-safety in an MPI Imple-
mentation: Requirements and Analysis,” Parallel Comput.,
vol. 33, no. 9, pp. 595–604, Sep. 2007.

[9] Cray Inc., “Cray Message Passing Toolkit,” http://docs.cray.
com/books/S-3689-24, Cray Inc., Tech. Rep., 2004.

[10] M. Gilge, IBM System Blue Gene Solution: Blue Gene/P
Application Development. IBM, Jun. 2013.

[11] T. Hoefler, J. Dinan, R. Thakur, B. Barrett, P. Balaji,
W. Gropp, and K. Underwood, “Remote Memory Access
Programming in MPI-3,” Argonne National Laboratory, Tech.
Rep., 2013.

[12] W. Gropp, E. Lusk, and R. Thakur, Using MPI-2: Advanced
Features of the Message-Passing Interface. MIT Press, 1999.

[13] M. Woodacre, D. Robb, D. Roe, and K. Feind, “The SGI Altix
3000 Global Shared-Memory Architecture,” Silicon Graphics,
Inc, White paper, Apr. 2003.

[14] R. Brightwell, K. Pedretti, and T. Hudson, “SMARTMAP:
Operating System Support for Efficient Data Sharing among
Processes on a Multi-Core Processor,” in SC. IEEE, 2008.

[15] C. SPARC International, Inc., The SPARC Architecture Man-
ual (Version 9). Upper Saddle River, NJ, USA: Prentice-Hall,
Inc., 1994.

[16] E. J. Bylaska et. al., “NWChem, A Computational Chemistry
Package for Parallel Computers, Version 6.3,” 2013.

[17] S. Hirata, “Tensor Contraction Engine: Abstraction and Au-
tomated Parallel Implementation of Configuration-Interaction,
Coupled-Cluster, and Many-Body Perturbation Theories,” J.
Phys. Chem. A, vol. 107, pp. 9887–9897, 2003.

[18] E. Aprà et al., “Liquid Water: Obtaining the Right Answer
for the Right Reasons,” in SC, 2009.

[19] J. Nieplocha, R. J. Harrison, and R. J. Littlefield, “Global Ar-
rays: A Portable “Shared-Memory” Programming Model for
Distributed Memory Computers,” in ACM/IEEE conference
on Supercomputing, 1994.

[20] S. Sur, H.-W. Jin, L. Chai, and D. K. Panda, “RDMA Read
based Rendezvous Protocol for MPI over InfiniBand: Design
Alternatives and Benefits,” in PPoPP, 2006, pp. 32–39.

[21] R. Kumar, A. R. Mamidala, M. J. Koop, G. Santhanaraman,
and D. K. Panda, “Lock-Free Asynchronous Rendezvous
Design for MPI Point-to-Point Communication,” in Euro
PVM/MPI, ser. Lecture Notes in Computer Science, 2008,
vol. 5205, pp. 185–193.

[22] K. Vaidyanathan, K. Pamnany, D. D. Kalamkar, A. Heinecke,
M. Smelyanskiy, J. Park, D. Kim, A. Shet, G, B. Kaul, B. Joo,
and P. Dubey, “Improving Communication Performance and
Scalability of Native Applications on Intel Xeon Phi Copro-
cessor Clusters,” in IPDPS, 2014.

[23] F. Trahay and A. Denis, “A Scalable and Generic Task
Scheduling System for Communication Libraries,” in IEEE
Cluster, Sep. 2009.

[24] F. Trahay, É. Brunet, and A. Denis, “An Analysis of the
Impact of Multi-Threading on Communication Performance,”
in 9th Workshop on Communication Architecture for Clusters
(CAC), May 2009.

[25] G. Santhanaraman, S. Narravula, and D. K. Panda, “Design-
ing Passive Synchronization for MPI-2 One-Sided Commu-
nication to Maximize Overlap.” in IPDPS, 2008.

[26] J. A. Zounmevo and A. Afsahi, “Intra-Epoch Message
Scheduling to Exploit Unused or Residual Overlapping Po-
tential,” in Euro MPI, 2014.

