
OpenSHMEM over MPI as a Performance
Contender: Thorough Analysis and

Optimizations

Min Si1, Huansong Fu2, Jeff R. Hammond3, and Pavan Balaji4

1 Argonne National Laboratory, USA
minsi.atwork@gmail.com

2 Amazon, USA
huansong.fu1@gmail.com

3 NVIDIA Corporation, USA
jeff hammond@acm.org

4 Facebook, USA
pavanbalaji.work@gmail.com

Abstract. OpenSHMEM is a Partitioned Global Address Space (PGAS)
style programming model for one-sided scalable communication over
distributed-memory systems. The community has always focused on high
levels of performance for specific communication operations such as RMA,
atomics, and collectives and encourages native implementations directly
porting onto each network hardware in order to pursue minimal instruc-
tions from the application to the network hardware. OSHMPI is an Open-
SHMEM implementation on top of MPI, which aims to provide portable
support of the OpenSHMEM communication over mainstream HPC sys-
tems. Because of the generalized functionality of MPI, however, OSHMPI
incurs heavy software overheads in the performance-critical path.
Why does OpenSHMEM over MPI not perform well? In order to answer
this question, this paper provides an in-depth analysis of the software
overheads of the OSHMPI performance-critical path, from the aspects
of both the semantics and the library implementation. We also present
various optimizations in the MPI and OSHMPI implementations while
maintaining the full MPI functionality. For remaining performance over-
heads that fundamentally cannot be avoided based on the MPI-3.1 stan-
dard, we recommend extensions to the MPI standard to provide efficient
support for OpenSHMEM-like PGAS programming models. We evalu-
ate the optimized OSHMPI by comparing with the native implemen-
tation of OpenSHMEM on an Intel Broadwell cluster with the Omni-
Path interconnect. The evaluation results demonstrate that the opti-
mized OSHMPI/MPI environment can deliver performance similar to
that of the native implementation.

1 Introduction

OpenSHMEM is a widely used Partitioned Global Address Space (PGAS) style
programming model for distributed-memory systems. As the fundamental prin-
ciple of the OpenSHMEM model, the community has heavily focused on high
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levels of performance for specific one-sided or collective communication patterns
through explicit data transfer operations. The intent of the OpenSHMEM spec-
ification is to get to “close to zero instructions” from the application to the
network hardware. For instance, each data transfer operation has the unique
typed version (i.e., separate function for each basic type such as shmem int put

and shmem double put). These functions embed the data type information as a
constant value at OpenSHMEM library compile time. Consequently the library
code can be highly optimized for each type without any type check overhead.
Following such a principle, the community has developed native implementa-
tions that are highly optimized for different vendor platforms (e.g., SGI SHMEM,
Cray SHMEM). Alternatively, some OpenSHMEM implementations tend to gain
portability by porting onto low-level network frameworks (e.g., Sandia OpenSH-
MEM (SOS) over Open Fabrics Interfaces (OFI) and OSHMEM over Unified
Communication X (UCX)). Nevertheless, these implementations still optimize
for a specific platform (e.g., SOS/OFI is optimized primarily for the Intel Omni-
Path architecture) and require the user to manually find the appropriate solution.

OpenSHMEM over MPI is the way to gain broader portability and vendor
support. In fact, MPI is recognized as the de facto standard for communication
on distributed-memory systems and supported by all major high-performance
computing (HPC) vendors and common parallel computing platforms. More im-
portantly, the MPI ecosystem covers powerful performance and debugging tools,
all of which are now available for use in OpenSHMEM programs. OSHMPI [11]
is the OpenSHMEM implementation built on top of the MPI-3 one-sided com-
munication model (also as known as RMA). However, it is treated primarily
as a functionality reference rather than as a serious performance contender.
The general belief in the community is that such a heavy software stack (e.g.,
OSHMPI/MPI/OFI) often generates bulky communication instructions and may
even cause significant performance loss.

Why does OpenSHMEM over MPI RMA not perform well? The primary
goal of this paper is to answer this question through a detailed deep-dive and
scientifically thorough analysis. From a high-level overview, we believe the per-
formance loss can be caused by two reasons. First, many MPI implementations
do not optimize the one-sided communication routines. Second, the MPI stan-
dard provides more generalized functionality than that of OpenSHMEM. The
generalization makes various complex algorithms possible to write, but it comes
with additional cost. For instance, a user can specify arbitrarily complex non-
contiguous derived datatypes in a call to MPI Put. MPI has to always check even
if such a functionality is not needed, such as in the context of OpenSHMEM
over MPI where only basic datatypes are used.

To diagnose all performance issues, we systemically analyze all instructions
generated for the OpenSHMEM over MPI context. Based on the analysis, we
further optimize the OSHMPI and MPI implementation to enable a fast path
for the OpenSHMEM context while still maintaining the full MPI functionality.
For any overhead that fundamentally cannot be removed, we recommend exten-
sions to the MPI standard to enhance support for the generic PGAS over MPI
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scheme. We employ a refactored version of the OSHMPI library and the MPICH
implementation with the ch4:ofi configuration to demonstrate the performance
study. MPICH provides a highly optimized MPI implementation by reducing
the software overhead and using techniques such as static builds and link-time
interprocedural optimization (IPO) inlining. It enables a very fast MPI Put/Get
path for both OFI and UCX [16].

To correctly capture and evaluate only the performance overhead of the
OpenSHMEM over MPI approach, we compare our implementation with the
SOS implementation of OpenSHMEM on an Intel Omni-Path platform where
both implementations are built on top of the same underlying OFI framework.
The experimental results demonstrate that the optimized OSHMPI/MPICH can
deliver performance similar to that of native implementations.

Scope of this paper: While OpenSHMEM defines several kinds of communi-
cation routines, this paper focuses on the fundamental limits in implementing
the most performance-critical and essential RMA routines in OpenSHMEM on
top of MPI RMA. We believe similar observations can be extended to other
functions.

2 Background

In this section we compare the semantics of the one-sided models in OpenSH-
MEM and MPI and briefly introduce the design of OSHMPI as the reference
OpenSHMEM over MPI implementation.

2.1 Semantics Overview

Both OpenSHMEM and MPI define the one-sided communication model. The
semantics, however, have several key differences. We summarize the differences
below.

Memory Exposure: OpenSHMEM defines the concept of symmetric data ob-
jects including symmetric heap and global/static variables. The symmetric data
is remotely accessible for all processes. Unlike OpenSHMEM, MPI requires the
user to explicitly expose a remotely accessible memory region called window.
Each window object is associated with a communicator (i.e., a group of pro-
cesses). This semantics allows the user to benefit from communication virtual-
ization. For instance, a user can create multiple communicators with the same
group of processes. With each communicator, the user can also create multiple
windows for the same memory buffer. The communication with each commu-
nicator (or window) is fully isolated. We note that OpenSHMEM specification
1.5 introduces the teams concept that provides similar communication virtu-
alization. In this paper, we focus only on the implementation of the default
symmetric data objects.

Operation Expression: In OpenSHMEM, the RMA operation routines di-
rectly deal with the absolute virtual address of the remote buffer, and the data
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type of each operation is encoded in the function interface (e.g., shmem int put).
The interface of MPI RMA operations has two differences. First, it requires the
relative displacement of the remote buffer rather than an absolute virtual ad-
dress. This was designed to meet the requirements of various networks, some
of which require relative offset whereas others require an absolute virtual ad-
dress. The second difference is that both basic data types (e.g., integer or float)
and complex user-defined data layout (e.g., vector or struct) are specified as a
datatype input parameter. This allows an MPI RMA operation to carry arbitrary
data layout.

2.2 OSHMPI

As indicated in the semantics comparison, MPI provides more generalized func-
tionalities than OpenSHMEM does. Thus, the one-sided communication of Open-
SHMEM can be fully expressed by using MPI RMA. OSHMPI-1.0 is a reference
implementation of OpenSHMEM 1.2 over MPI-3 [11]. As the basis of this study,
we redeveloped the OSHMPI library to fully support OpenSHMEM 1.4 and
released it as OSHMPI-2.0b1.1 We give here a brief overview of its high-level
design.

OSHMPI internally creates two MPI windows at OpenSHMEM initializa-
tion, one for symmetric heap and the other for global/static variables. Ev-
ery process locks the two windows by calling MPI Win lock all immediately af-
ter window creation. Thus, each OpenSHMEM Put/Get operation can be im-
plemented by using the corresponding MPI operation followed with a call to
MPI Win flush local.2 The shmem quiet synchronization can be implemented by
using MPI Win flush all3 and MPI Win sync.4 At finalization, OSHMPI unlocks
the internal windows on all processes and frees the windows before making a call
to MPI Finalize.

3 Related Work

In this section we describe the related work in the following three categories.

Native OpenSHMEM Implementations: The original implementations of
SHMEM were native implementations directly on top of hardware such as the
Cray T3D [5]. Subsequent native implementations included QSHMEM for the
Quadrics Elan network [15]. Many SGI platforms offered an optimized native
implementation of SHMEM, including ccNUMA systems. Cray SHMEM is the

1 https:// github.com/pmodels/ oshmpi/ releases/ tag/ v2.0b1
2 Flush local locally completes all outstanding RMA operations initiated by the calling

process to the remote process specified by rank on the window.
3 Flush all ensures all outstanding RMA operations issued by the calling process to

any remote process on the window will have completed both at the local and at the
remote side.

4 Win sync synchronizes memory updates on the specific window.

https://github.com/pmodels/oshmpi/releases/tag/v2.0b1
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highly optimized native implementation for Cray XC and XK series supercom-
puters. It is directly implemented on top of the low-level DMAPP API. Cray
OpenSHMEMX [13] is a OpenSHMEM specification version 1.4 compliant na-
tive implementation for current and future-generation Cray systems. On Infini-
Band (IB) platforms, three OpenSHMEM implementations are commonly used.
OSHMEM[3] is an implementation of OpenSHMEM API that is distributed
within the Open MPI distribution. It is implemented on top of the low-level
UCX communication framework. Scalable-SHMEM [2] is the native implemen-
tation for Mellanox IB and works with the OpenFabrics RDMA for Linux stack
(OFED). MVAPICH2-X is the hybrid MPI+PGAS release of MVAPICH li-
brary and is highly optimized for IB systems [12]. On Intel Omni-Path systems,
SOS [14] is the primary native implementation. It is implemented on top of
the low-level OFI communication framework. Our analysis for the OSHMPI/
MPICH stack utilizes the same OFI framework. Thus we choose SOS as the rep-
resentative of OpenSHMEM native implementations and compare it with our
implementation in this paper.

Other PGAS over MPI Implementations: MPI is often used as the portable
underlying communication runtime of high-level PGAS libraries. Dinan et al. [7]
analyzed the semantic mismatch between the the ARMCI communication inter-
face of Global Arrays and MPI-2 RMA and evaluated the performance of Global
Arrays applications on the resulting implementation, ARMCI-MPI [1], on three
different HPC platforms. Since the introduction of MPI-3, ARMCI-MPI is able
to use RMA quite naturally, and the current implementation maps ARMCI’s
one-sided operations directly to MPI’s. DASH [9] is a C++ template library
following a PGAS-like programming model. DART-MPI [18] is a portable im-
plementation of the DASH runtime based on the MPI-3 shared memory support
and RMA operations. OpenCoarrays is a library that supports the Fortran 2008
coarrays PGAS model using MPI (and possibly other communication protocols),
which is used by GCC Fortran today [8]. The Intel Fortran implementation of
coarrays is based on MPI-3 one-sided communication [4]. Bonachea and Du-
ell [6] analyzed the usage of the MPI-1 two-sided model and MPI-2 RMA for
Global Address Space (GAS) languages such as Unified Parallel C (UPC) and
Co-Array Fortran (CAF). Their analysis showed that those MPI-1 and MPI-2
models are unsuitable for GAS languages. Yang et al. [17] then demonstrated
that the more comprehensive MPI-3 RMA framework can be used as the runtime
of CAF with a broader goal of enabling a single application to use both MPI
and CAF with high interoperability. All these previous studies focused on the
complete functionality and high-level performance. In contrast, our work pur-
sues more fine-grained semantics-mismatch and overhead analysis together with
a comprehensive performance fine-tuning. None of these aspects are covered by
previous studies. We also note that the outcome from our work may also apply
to the other PGAS over MPI libraries.

Software Overhead Analysis: Raffenetti et al. [16] analyzed the software
overhead of the MPICH implementation of MPI. Their analysis focused primar-
ily on the instruction-overhead critical paths including MPI send/and MPI Put
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operations, and the optimizations were proposed for general MPI applications.
In contrast, this paper focuses on the OpenSHMEM context that gives more
restricted semantics than that of the underlying MPI layer, thus exposing dif-
ferent overheads and optimization opportunities. Our analysis covers both the
instruction-overhead critical MPI Put/Get operations and the time-consuming
synchronization routines. We note that our work is based on the MPICH imple-
mentation that includes all optimizations presented in [16].

4 Analysis of Performance Loss in Contiguous RMA

Although OSHMPI is functional, many of the generalized features of MPI are
unnecessary for the support of OpenSHMEM and even cause performance loss,
especially in the performance-critical Put/Get routines in comparison with a
native implementation of OpenSHMEM. We demonstrate and analyze the per-
formance loss in the rest of this section. We note that we present only the
instruction analysis of the Put path, but the observations can be fully applied
also to the Get path. Thus, we omit the description of Get.

Our analysis and optimizations are based on the OSHMPI-2.0b1 and MPICH-
3.35 releases. OSHMPI-2.0b1 fully supports the OpenSHMEM 1.4 specification
and enables function inlining for all OSHMPI internal routines. We utilize the
ch4:ofi configuration of MPICH that provides highly optimized MPI RMA [16].
In the remainder of this paper OSHMPI refers to the OSHMPI-2.0b1 version and
MPICH refers to the ch4:ofi configuration of MPICH-3.3 unless otherwise speci-
fied. To emphasize the extra software overhead caused by the MPI layer, we com-
pare the internal implementation and the instructions of OSHMPI/MPICH with
those of SOS 1.4.2 release as the representative of native implementations. Our
analysis utilizes a basic latency scenario where one process performs shmem putmem

followed with a call shmem quiet to the remote process. We discuss their internal
implementations and analyze the overhead separately.

shmem putmem: It issues a Put operation to the remote process, and return-
ing from this function ensures the source buffer can be reused. In other words,
the Put operation is locally completed. A native implementation of shmem putmem

usually consists of only a few internal steps. For instance, SOS implements this
routine with two steps: (1) preparing OFI write parameters and making a call to
ofi inject write or ofi write,6 and (2) waiting the local completion of the out-
standing write by calling fi cntr read and fi cntr wait.7 In contrast, OSHMPI/
MPICH involves a number of additional steps, as demonstrated in Figure 1. We
separate these steps into three phases and describe each step below.

5 http://www.mpich.org/ downloads/
6 ofi inject write is used for data smaller than 64Bytes, and ofi write is used for

other data sizes. The latter only initiates a write to remote memory, but the former
also guarantees local completion.

7 fi cntr read reads an OFI event counter that is updated at operation completion,
and fi cntr wait is its blocking version.

http://www.mpich.org/downloads/
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1 shmem_putmem(dest , source , nelems , pe) {
2 translate_win_and_disp(dest , &win , &disp); // (1)
3
4 /* nonblocking put */
5 MPI_Put(source , nelems , src_dtype=MPI_BYTE , pe, disp , nelems ,

dest_dtype=MPI_BYTE , win) {
6 win_get_ptr(win , &win_ptr); // (2)
7
8 trans_rank_to_netaddr(pe, win_ptr ->comm , &nw_addr); // (3)
9

10 decode_dtype(src_dtype , &src_size , &src_contig ,...); // (4)
11 decode_dtype(dest_dtype , &src_size , &dest_contig ,...);
12 if (src_contig && dest_contig && bytes <= ofi_max_bytes) { // (5)
13 prepare_ofi_write_parameters (...); // (6)
14 dest_vaddr = disp + win_ptr ->abse; // (7)
15 ofi_inject_write (...);
16 }
17 }
18
19 /* ensure local completion of nonblocking put */
20 MPI_Win_flush_local(pe , win) {
21 win_get_ptr(win , &win_ptr); // (8)
22 wait_ofi_completion (...); // (9)
23 target_ptr = win_find_am_target(win_ptr , pe); // (10)
24 do {
25 MPI_full_progress (); // (11)
26 } while (target_ptr && target_ptr ->local_cmpl_cnts != 0);
27 }
28 }

Fig. 1: Pseudo code of shmem putmem implementation in OSHMPI/MPICH

– Phase-1: MPI parameter preparation. The OSHMPI layer translates the dest

buffer address to its corresponding window handle (i.e., either the window
for symmetric heap or the one for global/static variables) and the relative
displacement (step (1) in Figure 1).

– Phase-2: MPI Put. It then makes a call to MPI Put with the MPI BYTE datatype.
The implementation of MPI Put can be further divided into six steps. It first
gets the internal object pointer of the win handle (step (2)). The internal ob-
ject is used to store window attributes such as the initial address, size, and
displacement unit of remote memory regions associated with this window.
It next translates the remote process’s rank in the window’s communicator
to its physical network address (step (3)). The network address will be used
when posting an OFI write. Because the ranks in each communicator can be
arbitrarily reordered, the address lookup is an expensive operation. It then
decodes the source and destination datatypes to obtain the data layout such
as data sizes and whether the data is contiguous (step (4)). After that, it
checks whether both source and destination datatypes are contiguous and
other OFI conditions are met (step (5)). If so, it then prepares OFI write
parameters (step (6)), calculates the absolute virtual address of the desti-
nation buffer (step (7)), and makes a call to ofi inject write or ofi write

similarly to the implementation of SOS.
– Phase-3: Local completion. Because MPI Put is a nonblocking operations, we

need to issue MPI Win flush local on the corresponding window to ensure its
local completion. The internal implementation of flush local can be broken
into four steps. It first gets the internal object pointer of the win handle
(step (8)). It next waits for the completion of any outstanding writes in
OFI by calling a loop of fi cntr read and fi cntr wait (step (9)). It then
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checks whether there is a target active message object associated with the
remote rank (step (10)). This step is necessary for MPICH because some
RMA operations (e.g., Put with very sparse noncontiguous data or Accumu-
lates with a network-unsupported reduce operation) cannot be offloaded to
hardware and have to fall back to the active-message-based approach. If the
target active message object exists, it then triggers MPI full progress until
all outstanding active messages on the target process are locally completed;
otherwise, it makes the full progress once (step (11)). MPICH ensures that
the full progress is always triggered in blocking communication calls in or-
der to guarantee prompt progress for all MPI communication types such as
point-to-point, collectives, and internal active messages.

Obviously, these additional steps in OSHMPI/MPICH generate a significant
number of CPU instructions on the performance critical operation path. We
used the Intel SDE tool to emulate instructions generated from the OpenSH-
MEM latency program statically linked with the OSHMPI and MPICH libraries
and that linked with SOS. The instructions were generated with nelem=4 in
shmem putmem. Table 1 summarizes the instruction counts generated by each in-
ternal step of OSHMPI/MPICH (see the Original Count column) and that of
SOS. As expected, OSHMPI/MPICH consumes more significant instructions
than does SOS. The total instruction count of OSHMPI/MPICH is 333 whereas
SOS consumes only 71, without counting the instructions of the underlying OFI
library. We especially emphasize the instructions caused by the requirement of
MPI semantics (rows are highlighted in gray), which are completely unnecessary
for the SOS implementation.

Table 1: shmem putmem instruction count analysis with parameter nelem=4. Gray
rows indicate instructions caused by the requirement of MPI semantics. The
others instructions in MPI and SOS are implementation-specific; we omit the
description.
OSHMPI Internal Step Orig Cnt Opt Cnt SOS Internal Step Cnt
OSHMPI: calling overhead 14 16 SOS: calling overhead 16
(1) OSHMPI: trans win and disp 12 5 - -
MPI Put: calling overhead 9 0 - -
(2) MPI Put: get win obj 14 9 - -
(3) MPI Put: trans rank to network address 17 5 - -
(4) MPI Put: decode dtypes 22 0 - -
(5) MPI Put: check OFI conditions 13 7 SOS: check OFI conditions 7
(6) MPI Put: prepare OFI param 14 8 SOS: prepare OFI param 24
(7) MPI Put: compute dest vaddr, mr rkey 8 1 - -
Flush local: calling overhead 8 0 - -
(8) Flush local: get win obj 7 8 - -
(9) Flush local: wait OFI completion 38 17 SOS: wait OFI completion -∗

(10) Flush local: find targets with active msg 59 0 - -
(11) Flush local: MPI full progress 81 2 - -
MPI: others 15 15 SOS: others 24

OSHMPI total 333 93 SOS total 71
∗ SOS skips completion waiting for data smaller than 64 bytes because it uses fi inject write,
which ensures local completion at return. Such an optimization cannot be done in MPICH because
flush local cannot determine whether other RMA operations (Get or large Put) has been issued.
Thus, it has to always check the OFI completion counters (step (9)).
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shmem quiet: We then perform a similar analysis for the shmem quiet rou-
tine. This ensures completion of all remote memory access and memory up-
dates. In SOS, the synchronization is done by waiting for OFI completion coun-
ters. OSHMPI, however, has to take several MPI calls to ensure the seman-
tics correctness required by shmem quiet. Figure 2 demonstrates the internal
implementation of shmem quiet in OSHMPI/MPICH. OSHMPI internally calls
MPI Win flush all and MPI Win sync at quiet. Because OSHMPI creates two win-
dows, one for symmetric heap (symm heap win) and the other for global/static
variables (symm data win), it must call the two MPI functions twice.

In flush all, MPICH first gets the internal object pointer of the win han-
dle (step (1)). It next waits for OFI completion (step (2)). It then traverses
all target objects that are associated with the specific window to ensure any
outstanding active-message-based operations in this window are completed re-
motely (step (4)). While waiting for the active message completion, it iteratively
makes MPI full progress. Similar to flush local, the full progress is made at least
once (step(3)). The next MPI function is win sync, which is used for memory
synchronization.

1 shmem_quiet () {
2 /* ensure remote completion */
3 MPI_Win_flush_all(win=symm_heap_win) {
4 win_get_ptr(win , &win_ptr); // (1)
5 wait_ofi_completion (...); // (2)
6
7 target_am_all_cmpl = TRUE;
8 do {
9 MPI_full_progress (); // (3)

10
11 // (4)
12 /* traverse targets that received active message to ensure

remote completions on all targets */
13 for (pe = 0; pe < win_ptr ->comm_ptr ->local_size; pe++) {
14 target_ptr = win_find_am_target(win_ptr , pe);
15 if (target_ptr && target_ptr ->remote_cmpl_cnts) != 0) {
16 target_am_all_cmpl = FALSE; break;
17 }
18 }
19 } while (! target_am_all_cmpl);
20 }
21 /* ensure memory updates */
22 MPI_Win_sync(win=symm_heap_win) { // (5)
23 memory_barrier ();
24 }
25 MPI_Win_flush_all(win=symm_data_win) { // (6)
26 /* same as above */
27 }
28 MPI_Win_sync(win=symm_data_win) { // (7)
29 /* same as above */
30 }
31 }

Fig. 2: Pseudo code of shmem quiet implementation in OSHMPI/MPICH

Table 2 summarizes the instruction count of shmem quiet generated by OSHMPI/
MPICH (see the Original Count column). The dominant cost in the OSHMPI/
MPICH path comes from the MPI full progress and the traversal of target ob-
jects (steps (3–4)) in MPI Win flush all, both are required by MPI semantics.
Such a cost is even doubled because OSHMPI internally maintains two win-
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dows. As a result, OSHMPI/MPICH consumes 544 instructions whereas SOS
consumes only 91. We note that the result captures the instructions taken by
the Put latency program where only one Put is issued prior to a quiet. Thus,
OSHMPI/MPICH does not issue any active-message-based operation and makes
the MPI full progress only once.

Table 2: shmem quiet instruction count analysis. Gray rows highlights instructions
caused by the requirement of MPI semantics. The others instructions in MPI
and SOS are implementation-specific; we omit the description.
OSHMPI Internal Step Orig Cnt Opt Cnt SOS Internal Step Cnt
OSHMPI: calling overhead 15 15 SOS: calling overhead 15
Flush all: calling overhead 4 0 - -
(1) Flush all: get win obj 7 7 - -
(2) Flush all: wait OFI completion 14 14 SOS: wait OFI completion 51
(3) Flush all: MPI full progress 81 2 - -
(4) Flush all: traverse targets with active msg 130 0 - -
Win sync: calling overhead 4 0 - -
(5) Win sync: memory barrier 1 1 - -
(6) Flush all for global/static var 267 3 - -
(7) Win sync for global/static var 5 0 - -
MPI: others 16 2 SOS: others 25

OSHMPI total 544 44 SOS total 91

5 Optimizations for Fast RMA

Based on the overhead analysis in the preceding section, we then investigate
ways to optimize the shmem putmem and shmem quiet in the OSHMPI/MPICH
environment. We note that although our optimizations and discussion are based
on the MPICH implementation, most address general issues also exist in other
MPI implementations.

5.1 Basic Datatype Decoding with IPO Link-Time Inlining

Each OpenSHMEM RMA operation directly encodes the datatype in the func-
tion calls and supports only the standard RMA types. The datatype information
is treated as a constant in the native implementations. Unlike OpenSHMEM,
MPI allows the user to specify arbitrary datatypes such as the basic datatype
MPI INT or a complex user-defined derived datatype (e.g., vector, struct). The
datatype description is encoded into the MPI datatype object passed to MPI
calls as an input variable. MPICH cannot optimize the datatype decoding pro-
cess at compile time because the value of the datatype variable is unknown.
Because of such a semantics limitation, the constant information of datatypes
was lost in OSHMPI/MPICH and caused 22 additional instructions at the RMA
fast path (see Table 1 step (4)). Many of these instructions are expensive pointer
dereferences (i.e., to extract the attributes of the datatype object).
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The interprocedural (IPO) optimization technique allows compiler to opti-
mize code across source files and libraries at link time. This feature is provided by
mainstream modern compilers such as the Intel compiler and the LLVM family.
One of the IPO features is to inline functions across libraries and apply constant
propagation for all inlined functions.

We note that IPO is extremely time-expensive when the optimizing space
is large. Thus, we need to carefully define the inlining scope. Specifically, we
make the following two configurations: (1) We inline only OSHMPI and MPICH
libraries at link time, and (2) we explicitly exclude any non-performance-critical
path in OSHMPI such as shmem init. After applying IPO link-time inlining, we
observe that MPICH can recognize the basic datatype defined for each RMA
operation as a constant (e.g., MPI INT is for shmem int put).

Once the datatype parameter becomes a constant, we then reconstruct the
MPI datatype decoding routine to eliminate pointer dereferences. Specifically,
we embed the required datatype attributes into the object handle rather than
storing them as object fields. Such an approach works for basic datatypes be-
cause they require only two essential attributes when issuing an RMA operation:
datatype kind (i.e., basic or derived) and size in bytes. The former is to distin-
guish a basic datatype from more complex derived datatypes; thus the fast-path
code can be chosen. The latter is required for issuing the corresponding network
data transfer. MPI implementations such as MPICH, MVAPICH, and Cray MPI
represent the object handle as a 32-bit integer. It allows us to reserve a few bits
for the two attributes. We note that the handle-embedded approach might be
more complicated for MPI implementations whose object handle is represented
as address pointers (e.g., OpenMPI). However, most architectures require some
level of alignment for all pointer allocations (typically 4-byte or 8-byte align-
ment). Thus, even though the pointer uses 64 bits to represent the address, the
two or three least significant bits are unused for alignment reasons. Therefore,
the MPI implementation can reserve those bits to embed such information.

The attribute extraction now becomes bit-and and bit-shift instructions op-
erated on the datatype handle. Thanks to IPO, these instructions can be fully
eliminated by the compiler since the handle is recognized as a constant value
at link time. Hence, no instruction is generated for datatype decoding in our
optimized OSHMPI/MPICH, just as that in native implementations.

5.2 Fast Window Attributes Access

MPI implementations usually maintain an internal data object for each window.
The object stores window attributes such as the associated communicator, net-
work address, network endpoint (ep), remote window’s memory registration key
(mr rkey), and remote window’s displacement unit (disp unit). At each RMA
operation, the MPI implementation has to load these window attributes to pre-
pare necessary parameters for network data transfer as well as for optimizations
(e.g., one may compare the target rank with the rank of the local process in
the communicator and perform local copy if they are identical). Accessing each
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attribute field is essentially a pointer dereference, however, and may involve ex-
pensive memory access overhead. Such an overhead can be significant especially
when multilevel pointer dereferences are involved (e.g., accessing any attribute
of the window’s internal communicator is a two-level dereference).

Table 3: Pointer dereferences and instruction counts caused by window attributes
access inside MPI Put.

Internal Step #Ptr Deref Instr Cnt
1. Translate rank to network address 2 8
2. Check target rank for self message optimization 2 3
3. Prepare OFI parameters (ep, base, mr rkey, disp unit) 4 13
4. OFI counter update for tracking completion 1 4

Table 3 shows the pointer dereferences and relevant instructions taken inside
each internal step of an MPI Put call. We note that the network address translation
(step 1) is required by the MPI semantics because the process’s rank can be
arbitrarily reordered in different communicators. Thus, MPICH has to maintain
a lookup table to translate the process’s rank in each communicator to the
physical network address. The lookup table implementation was highly optimized
in MPICH especially for common communicator patterns [10]. Figure 3a shows
the assembly code generated for this step within the context of an OSHMPI-
issued Put. The communicator is duplicated from COMM WORLD (i.e., defined as the
DIRECT INTRA communicator mode). Thus it can utilize the fast lookup path with
only 8 instructions. In order to load the communicator mode of the window and
choose the fast code path, however, two pointer dereferences cannot be avoided
(lines 1–2). We observed a similar situation in step 2. That is, in order to check
whether the target process is the process itself (i.e., a self message), MPICH
has to access the communicator’s internal field, causing a two-level dereference
(see lines 1–2 in Figure 4a). We note that most MPI implementations contain
this step in every RMA operation because it allows a self-message to be directly
transferred in the MPI layer through memcpy. Steps 3 and 4 are required by the
semantics of OFI data transfer and also can be found in a native implementation
of OpenSHMEM. Thus, our optimization focuses only on the former two steps.

Similar to the object handle of datatypes, we noticed unused bits also in
the window handle. Thus, we can identify whether the communicator is the
DIRECT INTRA mode when creating the window, and we can reserve a “window
attribute” bit from the window handle to store such information. When issuing
an RMA operation, we first check the value of the “window attribute” bit rather
than loading the communicator’s mode through pointer dereferences. We note
that the window handle has already been loaded into the CPU register when
converting to the internal window object; thus, checking a bit of the handle is
very lightweight. In the context of OSHMPI, the windows are always created over
the simplest DIRECT INTRA communicators. Thus, the optimization can effectively
eliminate the communicator dereferences in steps 1 and 2 for all RMA operations.
Figures 3b and 4b show the optimized assembly code.



OpenSHMEM over MPI as a Performance Contender 13

1 /* load win ->comm */
2 mov r9, qword ptr [rdi+0x70]
3 /* load comm ->mode */
4 mov edx , dword ptr [r9+0x1b8]
5 /* mode == DIRECT_INTRA? */
6 cmp rdx , 0xb
7 jnbe 0x41db85
8 jmp qword ptr [rdx *8+0 x769560]
9 /* load table */

10 mov rax , qword ptr [rip+0 x60522f]
11 /* shift to table[target_rank] */
12 add rax , 0x28
13 jmp 0x41db85

(a) Original version

1 /* handle & DIRECT_INTRA_MASK? */
2 test ebx , 0x2000000
3 jz 0x41cfb5
4
5
6
7
8
9 /* load table */

10 mov rax , qword ptr [rip+0 x647740]
11 /* shift to table[ target_rank ] */
12 add rax , 0x28
13 jmp 0x41d203

(b) Optimized version

Fig. 3: Translating rank to network address in Put operation with optimization
of embedded window attributes.

1 /* load win ->comm */
2 mov rdx , qword ptr [rdi+0x70]
3 /* comm ->rank == target_rank? */
4 cmp dword ptr [rdx+0x50], 0x1
5 jz 0x41dc32

(a) Original version

1 /* load global comm_world_rank */
2 mov edx , dword ptr [rip+0 x6278a0]
3 /* comm_world_rank == target_rank? */
4 cmp edx , 0x1
5 jnz 0x41d238

(b) Optimized version

Fig. 4: Checking self-message in Put operation with optimization of embedded
window attributes.

5.3 Avoiding Virtual Address Translation

Unlike OpenSHMEM, MPI defines generic relative offset (i.e., displacement) to
describe the address of the remote RMA buffer. This allows MPI to be com-
patible with different requirements for remote memory access performed by the
network hardware. For instance, some networks require the relative offset of the
remote buffer (e.g., the OFI/psm2 provider for Intel Omni-Path), but others
may require an absolute virtual address of the remote buffer (e.g., the OFI/gni
provider for Cray Aries interconnect and UCX for InfiniBand networks). When
utilizing MPI RMA in OSHMPI, however, we always must translate the remote
absolute virtual address defined in OpenSHMEM to the corresponding relative
displacement for every RMA operation. For networks that prefer absolute virtual
address, a consequent translation (i.e., from relative displacement to virtual ad-
dress) has to be performed again in the MPI layer. Obviously, such a translation
is redundant.

Unfortunately, we cannot eliminate the redundant translation if we treat the
MPI standard as a constant. To demonstrate the more efficient approach, we
extended the MPI standard with a set of new functions called MPI Put|Get abs

that can directly take the absolute virtual address as the input parameter. Fig-
ure 5 gives the API definition. Compared with the standard MPI Put|Get, the
only change is target vaddr, which was originally a displacement.

This way allows us to avoid the intermediate remote address translation in
OSHMPI and MPICH for networks that prefer absolute virtual address (e.g.,
Cray Aries and InfiniBand). However, we noticed that such an optimization can
cause an extra translation in the MPI layer for networks that require relative
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1 int MPI_Put_abs(const void *origin_addr , int origin_count ,
2 MPI_Datatype origin_datatype ,
3 int target_rank , MPI_Aint target_vaddr , int target_count ,
4 MPI_Datatype target_datatype , MPI_Win win);
5 int MPI_Get_abs(void *origin_addr , int origin_count ,
6 MPI_Datatype origin_datatype ,
7 int target_rank , MPI_Aint target_vaddr , int target_count ,
8 MPI_Datatype target_datatype , MPI_Win win);

Fig. 5: API definition of the abs extension for MPI Put|Get.

offset (e.g., Intel Omni-Path) at each of the extended abs function. To eliminate
such a translation, we require the user of MPI to use either only the basic RMA
functions or only the extended functions for each window. The user should choose
the preferred mode based on the application context. For instance, in OSHMPI
the abs functions are clearly more suitable. We then defined a window info hint
“rma abs” (value is true or false) to indicate whether the window is exclu-
sively used by the extended abs operations. If rma abs is true and the underlying
network requires relative offset, then MPICH internally registers MPI BOTTOM as
the base address of the virtual memory region on each process. For each RMA
operation, the relative offset can be calculated by (target vaddr−MPI BOTTOM).
Because MPI BOTTOM is a predefined constant in MPI, the arithmetic calculation
instructions can be fully eliminated by the compiler.

5.4 Optimizing MPI Progress

MPI implementations usually make expensive “full progress” in various MPI
blocking functions. The full progress guarantees that all types of MPI communi-
cation (i.e., point-to-point, collectives, and active message based RMA) can be
promptly progressed. For instance, for an active message based communication,
the remote process has to trigger the MPI progress in an MPI call to complete
the exchange of internal data packets. The MPI progress also internally trig-
gers low-level network progress by making network synchronization calls such as
fi cq read for OFI or ucp worker progress for UCX. These calls ensure prompt
progress for any internal software emulation (e.g., active message based RDMA)
or data processing (e.g., to move data out from a preregistered internal buffer)
at the low-level network libraries.

Both OpenSHMEM RMA and quiet operations involve the MPI full progress
in OSHMPI/MPICH. Table 4 analyzes the instructions that are taken for progress-
relevant internal steps in shmem putmem and shmem quiet. We note that these steps
are expensive not only in instruction counts but also in time because they force
memory synchronization with the network hardware.

The expensive progress steps are required for general MPI programs. Are
they necessary also in the special OSHMPI context? To answer this question, we
systemically analyze the MPI progress requirements below.

For MPI Point-to-Point/Collectives: Both MPI point-to-point and collec-
tives require two-sided communication between local and remote processes. Thus,
the remote process must ensure prompt progress, For instance, the eager pro-
tocol designed for small point-to-point messages requires the receiver process to
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Table 4: Progress-relevant internal steps in shmem putmem and shmem quiet in
OSHMPI/MPICH.

shmem putmem Instr Cnt
Flush local: wait completion of outstanding RMA operations 38
Flush local: MPI full progress 24

shmem quiet Instr Cnt
Flush all: wait completion of outstanding RMA operations 14
Flush all: MPI full progress 24

copy data from the MPI internal buffer to the user receive buffer in order to
complete the data transfer. This step may be performed in the progress routine
on the receiver process. For collectives, for example, a process involved in an
MPI Bcast call may receive the data from the root process and then need to for-
ward the data to another member process. Such a protocol is commonly used to
overlap multiple data transfer in collective algorithms. The data receiving and
forwarding steps are performed by the progress routine on each member process.
The point-to-point and collective semantics require all processes involved in the
communication to make the call. Hence, a process need perform such steps only
when a collective or point-to-point call has been made.

For Active-Message-Based MPI RMA: MPI implementations may utilize
internal active messages for an RMA operation if the underlying network hard-
ware cannot efficiently handle it. For instance, a pack+AM+unpack-based ap-
proach may be chosen for a noncontiguous Put if the data layout is very sparse.
An MPI Accumulate has to be implemented by using an active message if the
network hardware cannot guarantee atomic updates to the remote buffer with
the specified datatype or if the MPI implementation chooses to use only CPU-
based atomicity in order to be compatible with direct load/store-based intranode
Accumulates. Nevertheless, the MPI implementation always must assume that
the process may receive an active message from the other processes because
the above situations may potentially occur. Consequently, the progress routine
always has to be performed to promptly handle any incoming active message.

One may consider that the MPI implementation may predict whether active
messages will be used by remote processes and skip the progress routine when
possible. Such an approach, unfortunately, is complex because of two limitations.
First, we need information from both the user program and the underlying net-
work. To be specific, the user program must provide the (1) operation type (i.e.,
for atomic operations), (2) the basic datatype and data layout (e.g., contigu-
ous or sparse noncontiguous), and (3) the data length for each operation. The
network library must provide the (4) supported data layout for each operation
together with (5) the data length limitation (e.g., for ordered message or for
atomic message). By combining all the information, a correct prediction can be
made. We note that many of these information are required to check whether an
MPI Accumulate can directly leverage native network atomics or requires active
message. For simple Put/Get, only (2) and (3) are essential. Nevertheless, to
disable the active message progress on a remote process, we have to check all
information. Second, a process requires all the other processes in the window to
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share their local information in advance before any communication occurs (ide-
ally at window creation). The network-provided information is usually identical
on all processes; thus each process can simply query it locally. The user infor-
mation, however, may vary on each process. More important, the user has to
specify such information before communication occurs, likely through MPI info
hints. The hint may become significantly complex if the user program involves
several different combinations of (1–3) in a window. Clearly, such an approach
is impractical for MPI users.

Alternatively, we apply an engineer approach to resolve this issue. Specifi-
cally, we assume that all RMA operations can be handled directly by a network
library when starting an MPI program. Thus, we trigger the active message
progress with a very low frequency. For instance, we trigger the progress once
only every 100 times RMA flush calls are made. This allows MPICH to catch any
unexpected incoming active message. Once an active message is received, we then
revert to normal frequency (i.e., trigger progress at least once at each RMA flush
call). The mechanism exposes two MPI control variables (CVAR) for flexible user
adjustment. Specifically, we define MPIR CVAR CH4 RMA ENABLE DYNAMIC AM PROGRESS

to enable or disable the optimization (false by default) and MPIR CVAR CH4 RMA AM-
PROGRESS LOW FREQ INTERVAL to set the interval of progress polling at the low fre-

quency mode. The former is true at shmem init in OSHMPI. We expect that the
active message progress is always triggered with the low frequency for OpenSH-
MEM programs because all OpenSHMEM RMA and atomic operations can be
handled via native network operations.

For OFI/UCX Internal Progress: The first step of each MPI flush call in
Table 4 already triggers necessary network progress for RMA data transfer. Thus,
it is unnecessary to make MPI full progress again for such a purpose.

To summarize, the MPI full progress can be safely skipped in both MPI Win-
flush local and MPI Win flush all, thus significantly reducing overhead for both
shmem putmem and shmem quiet functions in OSHMPI/MPICH.

5.5 Reducing Synchronization in OSHMPI

Although we have eliminated the MPI full progress step in the flush calls, the
overhead of an MPI Win flush local or MPI Win flush all is still expensive because
the first step of each call always makes a call to network synchronization. We
note that such synchronization is required to complete a network data transfer
even in OpenSHMEM native implementations. In OSHMPI, however, we may
unnecessarily trigger the synchronization call (i.e., MPI Win flush all) twice at
shmem quiet, one for the window of symmetric heap and the other for that of
global/static data objects. If only one of the windows contains outstanding op-
erations, we need trigger the synchronization call only on that “active” window.
Thus, we set a flag for each window in OSHMPI to keep track of the existence
of outstanding operations. The same optimization applies to MPI Win sync.
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5.6 Other Implementation-Specific Optimizations

The instruction analysis also provides useful guidance for us to reduce unnec-
essary instructions at the performance critical paths. These optimizations are
MPICH-specific. Specifically, we apply four optimizations in MPICH: (1) elimi-
nating repeated MPI PROC NULL check,8 (2) removing unused signal checks in MPI
full progress, (3) statically triggering subprogressing hooks (e.g., for collectives)
instead of dynamic function pointer access, and (4) optimizing the hash search
for checking the existence of target active message objects.

6 Evaluation

In this section we evaluate the performance of OSHMPI/MPICH on the Argonne
Bebop cluster.9 Each Bebop node uses two sockets of the 18-core Intel Xeon
E5-2695 v4 processor (Broadwell) and is connected with the Intel Omni-Path
interconnect. We used the Intel compiler (version 17.0.4) and libfabric-1.7.0 as
the OFI network low-level library. We configured OSHMPI with the ch4:ofi

configuration of MPICH and compared it with the SOS 1.4.2 release.10 We linked
both the MPICH and SOS libraries with the same underlying libfabric library.
We also measured the OFI native Put latency by using a customized version
of the fi pingpong test included the libfaric official release. It mimics the data
transfer pattern of osu oshm put. We use it to demonstrate the ideal performance
of OFI-based data transfer. For each measurement we collected the execution
time of 10 runs and report the average and the standard deviation (shown as
error bars in the graphs). The error bars are very small for most results (less
than 5%) and thus can barely be seen.

6.1 Instruction Analysis

We first break down the instruction counts of optimized shmem putmem and shmem-
quiet following the same approach as that used in Section 4. We statically linked

the latency program against the OSHMPI and MPICH libraries with IPO link-
time optimization. We explicitly disabled inline functions in the latency program
layer to make a fair comparison with SOS. In other words, both OSHMPI and
SOS are unaware of the variable values defined in the latency program layer

8 MPI PROC NULL is an MPI predefined dummy process rank. An MPI RMA operation
using MPI PROC NULL as the remote rank is a no-op.

9 https://www.lcrc.anl.gov/ systems/ resources/ bebop
10 We have made the following changes in SOS to ensure a fair comparison with

OSHMPI/MPICH: (1) disable the OFI domain thread (set domain attribute
data progress = FI PROGRESS MANUAL at shmem init) to reduce latency overhead
at large data transfer; (2) reduce frequent calls to expensive fi cntr wait at
shmem quiet; and (3) disable bounce buffer optimization in the latency test be-
cause it increases latency overhead for medium data sizes (set environment variable
SHMEM BOUNCE SIZE=0).

https://www.lcrc.anl.gov/systems/resources/bebop
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(e.g., nelem) and thus treat them as variables at compile time. Consequently,
only the information defined in OSHMPI (e.g., datatype) is passed into MPICH
via link-time inlining.

The Optimized Count columns in Tables 1 and 2 summarize the instruction
counts generated by shmem putmem and shmem quiet, respectively. Roughly speak-
ing, the instruction overhead of shmem putmem is reduced to 93 and the overhead
of shmem quiet is reduced to 44 with all these optimizations. We especially high-
light the following instruction-saving aspects. First, thanks to IPO link-time
optimization, the instruction count of all cross-library overheads (e.g., calling
overhead of MPI Put and Flush local in shmem putmem) are now reduced to zero. It
also helped eliminate the datatype decoding overhead (step (4) of shmem putmem)
with an embedded datatype handle as described in Section 5.1. We note that
IPO allows more instructions to be saved throughout the implementation (i.e.,
partially reduced instructions in steps (5–6) and (9) of shmem putmem). We omit
the discussion in this paper. Second, the optimization of fast window attribute
access reduces the network address translation (step (3)) to only 5 instructions,
matching with the instructions demonstrated in Figure 3b. Third, the instruc-
tions for computing dest vaddr (step (7)) are optimized via the abs extension of
MPI RMA functions. Fourth, we emphasize the highly optimized progress rou-
tines (step (11) in shmem putmem and step (3) in shmem quiet). Because we avoid
unnecessary polling for non-RMA routines and utilize a dynamic approach to
deal with the active message challenge (see detail in Section 5.4) together with
implementation code refactoring (see Section 5.6), the optimized version now
consumes only 2 instructions for the MPI full progress step. Fifth, as shown
in Table 2, skipping unnecessary window synchronization (see Section 5.5) is
straightforward and effective. When only either symmetric heap or global/static
variable is used for communication, such an optimization can reduce 269 instruc-
tions including expensive low-level network synchronization calls. The remaining
3 instructions are used to check the window flag.

6.2 Latency

We next evaluated the latency of optimized OSHMPI/MPICH. We used the
osu oshm put and osu oshm get tests from the OSU microbenchmark suite (version
5.6.2) to measure the latency of Put and Get, respectively.

Figures 6a and 6b report the Put latency. For both the intrasocket and in-
ternode results, we also include the OFI native Put latency (denoted by OFI)
to indicate the ideal performance. The original OSHMPI/MPICH latency has a
clear gap between that of SOS and OFI, It consumes about 1 µs latency for a
1-byte message, whereas OFI and SOS require only 0.54 µs and 0.66 µs, respec-
tively. The optimized version significantly reduces the cost. The achieved latency
is almost identical to that of SOS. The improved latency is mainly contributed
by the optimization of MPI full progress in MPICH and reduced window syn-
chronization in OSHMPI. Similar observations can be made in the internode
results. Our optimizations reduce 0.4 µs latency of OSHMPI/MPICH with a
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1-byte message. The achieved latency is the same as that of SOS and OFI. For
other message sizes, we observe a similar trend.

The Get latency reported in Figures 6c and 6d shows less gap between the
original OSHMPI/MPICH and other implementations. Nevertheless, the opti-
mized OSHMPI/MPICH can achieve a lower latency that is the same as that of
SOS.

1.
0

1.
0

0.
9

1.
0 1.
1

1.
1

1.
1

1.
0

1.
1

1.
1 1.
2 1.
3 1.

7 2.
6 3.

4 4.
5 6.

8

0.
6

0.
6

0.
6

0.
6 0.
8

0.
8

0.
8

0.
7

0.
7

0.
8 0.
8 1.

0 1.
4 2.

3 2.
5 3.

5 5.
6

0.1

0.2

0.4

0.8

1.6

3.2

6.4

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

La
te

nc
y 

(u
s)

Data Size (Bytes)

OFI SOS
OSHMPI/MPICH(orig) OSHMPI/MPICH(opt)

(a) Intrasocket Put latency

2.
4

2.
4

2.
4

2.
4

2.
4

2.
4 2.
5 2.
8

2.
8 2.
9 3.
1 3.
3 3.
8 4.

9
10

.1 12
.4 18

.4

2.
0

2.
0

2.
0

2.
0

2.
0

2.
0

2.
0

2.
0

2.
0

2.
1 2.
2 2.
5 2.

9 4.
1

8.
6 11

.0 17
.0

1

2

4

8

16

32

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

La
te

nc
y 

(u
s)

Data Size (Bytes)

OFI SOS
OSHMPI/MPICH(orig) OSHMPI/MPICH(opt)

(b) Internode Put latency

0.
6

0.
6

0.
6

0.
6

0.
6 0.
8

0.
8

0.
8 0.
8 0.
9 1.
0 1.
1 1.

5 2.
3 3.

1 4.
3 6.

4

0.
5

0.
5

0.
5

0.
5

0.
5 0.

7
0.

7
0.

7 0.
7 0.
8 0.
8 1.
0 1.

3 2.
2 2.

9 4.
2 6.

2

0.1

0.2

0.4
0.8

1.6
3.2

6.4

12.8

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

La
te

nc
y 

(u
s)

Data Size (Bytes)

SOS OSHMPI/MPICH(orig) OSHMPI/MPICH(opt)

(c) Intrasocket Get latency

2.
0

2.
0

2.
0

2.
0

2.
0

2.
0

2.
0

2.
0

2.
1 2.
1 2.
3 2.
5 3.

0
5.

0
8.

9 10
.7 16

.8

1.
9

1.
9

1.
9

1.
9

1.
9

1.
9

1.
9

2.
0

2.
0 2.
1 2.
2 2.
4 3.

0
4.

7
8.

4 10
.8 16

.8

1

2

4

8

16

32
1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

La
te

nc
y 

(u
s)

Data Size (Bytes)

SOS OSHMPI/MPICH(orig) OSHMPI/MPICH(opt)

(d) Internode Get latency

Fig. 6: Latency evaluation on Bebop. The top and bottom labeled numbers are
the latency of OSHMPI/MPICH(orig) and OSHMPI/MPICH(opt), respectively.

6.3 Message Rate

The third set of experiments focus on message rate. We used the osu oshm put mr nb

and osu oshm get mr nb tests from the OSU microbenchmark suite. The com-
munication pattern involves multiple calls to the nonblocking shmem putmem nbi

(shmem getmem nbi for the Get test) followed by a call to shmem quiet. Thus, these
tests present the overhead of the lightweight nonblocking RMA calls.

Figures 7a and 7b report the message rate of nonblocking Put. We observe
that the optimized OSHMPI/MPICH significantly improves the message rate of
Put. It achieves an average improvement of 2.1x for intrasocket Put with varying
data size and 1.6x for internode Put. Since OSHMPI shmem putmem nbi internally
contains only an MPI Put, we confirm that the improvement is contributed by the
fast path optimizations (i.e., datatype decoding, fast window attribute access,
and RMA abs extension). The optimized message rate is almost identical to that
of SOS.
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We observe a similar trend with nonblocking Get. However, the gap between
the original OSHMPI/MPICH and SOS is much less than that of nonblocking
Put. Thus, the improvement ratio is reduced. We report an average improvement
of 10.3% for intrasocket Get with varying data size and 7.3% for internode Get.
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Fig. 7: Message rate evaluation on Bebop. The top and bottom labeled numbers
are the latency of OSHMPI/MPICH(orig) and OSHMPI/MPICH(opt), respec-
tively.

7 Conclusion and Future Work

OpenSHMEM and MPI are two widely used communication models for distributed-
memory systems. The OpenSHMEM functionalities can be implemented by us-
ing MPI. For instance, mapping the essential OpenSHMEM RMA operations to
MPI Put/Get with appropriate MPI window synchronization is straightforward.
However, a general belief in the community is that such an OpenSHMEM over
MPI implementation will not deliver the same level of performance as that of
native OpenSHMEM implementations. This is mainly caused by the additional
instructions generated for OpenSHMEM to MPI mapping. Therefore, OpenSH-
MEM over MPI is often used only as a short-term solution for platforms where
a native OpenSHMEM is not yet available. In this paper we demonstrated that
OpenSHMEM over MPI can actually become a performance contender. We show-
cased the OSHMPI and MPICH implementations and focused on the essential
RMA routines. We first made a thorough analysis to understand the instruction
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overhead generated in the RMA critical path of the OSHMPI and MPICH layers.
Based on the observed performance bottlenecks, we further optimized several key
aspects including datatype decoding, MPI window attribute access, virtual desti-
nation address translation, and the expensive MPI progress. Our evaluation was
performed on an Intel Broadwell cluster with the Intel Omni-Path interconnect.
We compared the optimized OSHMPI/MPICH with the native OpenSHMEM
implementation on that platform. We concluded that the optimized OSHMPI/
MPICH can deliver the same level of performance in both latency and message
rate as that of a native OpenSHMEM implementation.

Although the analysis and optimizations focused on the RMA routines, most
can be easily adapted also for other OpenSHMEM routines. As future work, we
plan to optimize atomics and collective routines in the OSHMPI and MPICH
environment. Furthermore, we note that our performance evaluation used only
microbenchmarks on the Intel Omni-Path platform. We therefore also plan to
look into the performance of miniapplications and evaluate other platforms.
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