Argonne°

NATIONAL LABORATORY

Techniques for Enabling Highly Efficient Message
Passing on Many-Core Architectures

Min Si
PhD student at University of Tokyo, Tokyo, Japan
Advisor : Prof. Yutaka Ishikawa, Prof. Reiji Suda

Guest graduate student at Argonne National Laboratory, IL, USA
Supervisor : Dr. Pavan Balaji

& THE UNIVERSITY OF TOKYO Email: msi@il.is.s.u—tolfvo.ac.ip ' .
Homepage: http://sudalab.is.s.u-tokyo.ac.jp/~msi/

é{“"(:‘.;.\ U.S. DEPARTMENT OF
s

Background

= Complexity in scientific applications
"= Trends of hardware change

= Popular programming models and existing challenges

Exascale

100Petascale

Application
Complexity

10Petascale

Petascale

Hardware Complexity

Min Si, Postdoc Interview, 2015-10-26

NWChem in ChemiStry interactions among ~21

water molecules

= Current applications have been looking at small-to-medium molecules:
consisting of 20-100 atoms

H .
)

— Amount of computation per data element is reasonably large, so scientists
have been reasonably successful decoupling computation and data movement
= For Exascale systems, scientists want to study molecules of the order of
a 1000 atoms or larger

— Coulomb interactions between the atoms is much stronger in the problems
today than what we expect for Exascale-level problems

— Larger problems will need to support both short-range and long-range
components of the coulomb interactions (possibly using different solvers)

interaction strength ~ short-range

A / long-range

— interactions among
> distance ~1000 water
moleculgs

w

Irregular Sparse Computation in NWChem

= Diversity in the amount of computation per data element is
going to increase substantially

= Regularity of data and/or computation would be substantially

different
Current computation pattern FDDE FDDE EDD EDD FDDE FDDE

%% B % %% . (F5 % (Ths|Tes) (Fos s
B W% W%
More than 50% time idling in CCSD(T) for W?* R = (L= U

[
20 RMA PGEMM Courtesy Pavan Balaji (Argonne)

|:||:||_|
=
|:||:||_|
=

g
|_|

=
|_|

=

|_|

=

5

1
1

o

— Task load balancing ?
5 l p— Communication complexity ?
) = - ety

Time (h)

1704 3072 6144 12288
Number of Cores

w

Genome Analysis in Bioinformatics

= Sequence alignment
= Sequence assembly

— Reconstruct long DNA
sequences by merging
many small fragments

= Gene mapping

L cell
) (@

/\ ‘nucleg ‘\
\xxﬁ/ =)
AR

T

mﬁzhmmomme

[Adapted from National Human Genome
Research Institute]

Hard to read whole genomes in current sequencing technology.

Instead, read many small fragments , called “reads”.

Sequencing Break into

small “reads”

| AGTTCCCTGGAACCGTGAC...

— » | > -
g U —
DNA Samples Reads
Represent reads as
De Bruijn graph
Assembly Search & merge

overlapping reads

t Output long contigs

[CCGTGA
[AGTTCCCTGGAACCGTGA

TN N\

Larger raw data & overlapping reads
e Human Genome: 2TB ~ 3TB DNA reads
* Metagenome: PB ~ EB+ level DNA reads

Min Si, Postdoc Interview, 2015-10-26

\ |
w

Massive Data Movement in Kiki Genome Assembly

Basic edge merging algorithm

remote nodes Step 2,3
Vs ACGCGATTCAG 1. Send local DNA unit to that node;
Step 1 /,w"""”’ ? GCGATTCAGTA 2. Search matchi.ng unit on that node;
yd /,/ ACGCGATTCAGTA 3. Merge two units on that node;
local node ‘<.__-——" g remote search 4. Return merged unit.
ACGCGATTCAG DNA consensus sequence

Step 4 (64Bytes ~ 1MBytes for single message)

Hard to balance task load

Large amount of outstanding data movement |+ 10° outstanding msgs / rank
e 2.3TB sample was assembled on

process (sender) 18,000 cores for 4 days, 90%+ of time
memory idling

DNA units 1: DNA rea
ACGCGATTCAG me ds

T~

Sing r esult O
DNA units 2: D ° rocess (server 1)
GCATAGTATCG NA reaqy P Y

s
Merg;
g/ng /'eSu/tS ‘

DNA units 3:
ATGAGGCATAC N4 , process (server 2)
eads

process (server 3)

\ |
w

Particle Tracing and Graph in Parallel Visualization

Semi-regular Communication in Particle tracing :
Exchange particles in 4D time-space neighborhoods

= Particle tracing

time
neighborhood

time block

— e.g., For Rayleigh—Taylor instability

e Interface between a heavy fluid
overlying a light fluid

Mushroom cloud:

RTI at the interface between
hot less-dense and cold
more-dense air

space
neighborhood

Irregular Task load

e

; “-‘-'o‘%;A \1‘" A A

/=
s‘f*\ a

= |rregular graph visualization

— Completely data-driven

— Possible optimization is unclear but
is interesting to investigate !

Courtesy Tom Peterka (Argonne)

7
Min Si, Postdoc Interview, 2015-10-26

GFMC in Nuclear Physics

= Green’s Function Monte Carlo

— The “gold standard” for ab initio QOO

calculations in nuclear physics at ‘.

..
Argonne (Steve Pieper, PHY) Q& f .

= |rregular pattern for load balancing 4f ADLB put/get

— A non-trivial master/slave algorithm,
Q‘ ..
with assorted work types and priorities O
.‘ .0
— multiple processes create work
piep O Application Processe!
dynamically © ADLB Servers

— large work units

Courtesy Rusty Lusk (Argonne)

8
Min Si, Postdoc Interview, 2015-10-26

Complexity in Hardware Design

1996 ASCI Red

Hit the power wall,
multi-core started

2017-2018 Summit

2018-2019 Aurora

v

10Petasale
100Petasale

Complexity of processors and memory design

Terascale

Petascale

Increasing power per

processor

[]
[]
[]
[]
a (

Heterogeneous (i.e., CPU+GPU/Manycore) Exascale
Fat node performance (many threads/cores)

On-package memory

|/O Burst buffer

Min Si, Postdoc Interview, 2015-10-26

Many-core Architectures

Massively parallel environment

Intel® Xeon Phi co-processor
— 60 cores inside a single chip, 240 hardware threac
— SELF-HOSTING in next generation

Blue Gene/Q

Node resources Mira Aurora

#Cores/ 16/64 60+/240+
#Threads —> 4X |
Memory 16GB 32GB (High [Adapted from Wikipedia]
Bandwidth Memory)
—> 2X

Hardware Characteristics
* Large amount of simple and low frequency cores
e Other on-chip resources are growing at a lower rate...

Min Si, Postdoc Interview, 2015-10-26

10

\ |
w

Scientific Programming models (1)

Hybrid MPI+Threads model

= To fully utilize the hardware

resources
* Large amount of low frequency cores
= Massive parallelism in * Limited other on-chip resources (e.g.,
computation memory)

= On-chip resource sharing

MPI Process

= To handle complex & irregular OpenMp Threads

MPI Process

OpenMP Threads

computation

= Dynamic & fine-grained task
scheduling

11

Min Si, Postdoc Interview, 2015-10-26

Hybrid MPI + threads modes

Funneled / Serialized mode (most widely used)

Traditional Thread Single mode * Multithreaded user computation
e Still single thread issues MPI calls
/* user computation */ MPI Process
, #pragma omp parallel —d—JdJ
MPI_Function (); { /* user computation */ } é % é COMP.
/* user computation */ MPI_Function (); ; e
1 | 1
#pragma omp parallel % % % % COMP.
{ /* user computation */ } J
Multithreading mode ‘l I

#pragma omp parallel MPI Process
{ 'l 'l 'l 'l
/* user computation */ % % % %COMP,

MPI_Function (); Pl COMM.

: /* user computation */ ‘% ? $?COMP*

! 12
& T Min Si, Postdoc Interview, 2015-10-26

Problem Statement

* Multiple threads are created for user computation

= But only single thread issues MPI

#pragma omp parallel R R
{ /* user computation */ } % % % é coMP.

MPI_Function ();

MPI Process

MPI COMM.

#pragma omp parallel % % % % comp
{ /* user computation */ } '

Large amount of IDLE threads
Single lightweight core delivers poor
performance

13
Min Si, Postdoc Interview, 2015-10-26

\ |
w

Scientific Programming models (2)

Global Address Space

One-sided programming

= PGAS-like applications (e.g., Global Arrays H
for NWChem Physically distribution
’ g ¢ 0 &
= CESAR project (Next generation Nuclear EH

Reactor Modeling)

= For better resource sharing

= Memory sharing across nodes on &3 — *
distributed memory systems
= To handle complex & irregular \ SIETk S|ET|< : Acbclgncwlr(ulat
computation iocxa - —a N j

= Dynamic, data-driven communication Serform DEEMM in local buffer

14

Min Si, Postdoc Interview, 2015-10-26

Problem Statement

= MPI one-sided operations are not truly one-sided !
— Some operations can be supported by hardware (e.g., PUT/GET on IB,
Cray)

— Other operations still have to be handled by software (e.g., 3D
accumulates of double precision data)

Process O Process 1

Software implementation of one-sided
operations means that the target process
has to make an MPI call to make progress.

Not TRULY asynchronous !

Non-contiguous Accumulate in MPI

Min Si, Postdoc Interview, 2015-10-26

15

Research Contribution

= Enable highly efficient message passing on many-core

architectures for various kinds of scientific applications

I. Multithreaded MPI for hybrid MPI+ Il.

threads model

e Sharing Idle Threads with
application inside MPI

e Optimizing MPI internal processing
by massive parallelism

B33 sow |
o[

T e

Process-based Asynchronous Progress
for MPI one-sided programming
* Flexible & Portable & Low
overhead
* Improve SW-handled RMA
operations without affecting HW-
handled RMA.

Process O Process 1 Ghost
[Process

|
Computation I

' _ I _~=—+;iPI Recv
—

16
Min Si, Postdoc Interview, 2015-10-26

Argonne°

NATIONAL LABORATORY

MT-MPI
Multithreaded MPI for Many-Core Environments

Published Paper

1. “MT-MPI: Multithreaded MPI for Many-core Environments.” M. Si, A. Pena, P. Balaji,
M. Takagi, and Y. Ishikawa. ICS 2014.

\ |
w

Core Concept of Multithreaded MPI

= Sharing Idle Threads with Application inside MPI

= Parallelizing MPI internal processing

#pragma omp parallel
{ /* user computation */ } é é é é
COMP.
MPI_Function (){ P A N
#pragma omp parallel | ; e
{ Semm e S ————— ’
/* MPI internal task */ = | ‘
} == S ow
I J
|
} v
#pragma omp parallel
{ /* user computation */ } S

18
Min Si, Postdoc Interview, 2015-10-26

Challenges (1/2)

= Some parallel algorithms are not efficient with insufficient

threads, need tradeoff

#pragma omp parallel

{ l
/* user computation */

#pragma omp single

{
/* MP1_Calls */ \
) SINGLE SECTIO
} Ba
Number of available threads is
UNKNOWN !

19
Min Si, Postdoc Interview, 2015-10-26

Challenges (2/2)

= Nested parallelism

— Simply creates new Pthreads, and offloads thread scheduling to OS

#pragma omp parallel ¢gm Creates N Pthreads !
{
#pragma omp single
{
#pragma omp parallelé® Creates N Pthreads !
{..}
) 5 Threads Oversubscription

r

v

Should ONLY use IDLE threads.
However, it is UNKNOWN !

20
Min Si, Postdoc Interview, 2015-10-26

w0
Design Overview
= Modification in OpenMP runtime Guam,,i’;ﬁ':ﬁeo;h,eads
— Expose number of IDLE threads ?pragma omp parallel 7
— Guaranteed Idle Threads ?pragma EBiinsie l
— Temporarily Idle Threads } Ba
= Modification in MPI)

— Parallelize internal tasks

— Use num_idle_threads for tradeoff between sequential and parallelism

algorithms

— Use num_idle_threads for specifying num_threads in nested parallel

region to avoid threads overrunning issue

21
Min Si, Postdoc Interview, 2015-10-26

MPI Internal Parallelism

DDT packing/unpacking

234:{>05101520
7809

10

11

1213 (14

15

16

17118 |19

20

21

22 |23 | 24

Shared memory communication

Sender ghared Buffer Receiver
>

:3? Cell[O]
| Cell[1]

Buffer Cell[2]
§ Cell[3] User

[L]
W

LLLL
C
—+
®

InfiniBand communication
PO P1

Min Si, Postdoc Interview, 2015-10-26

22

Evaluation on Stampede

Hybrid MPI+OpenMP NAS MG (Class E, 64 processes)
using parallelized DDT packing/unpacking

One-sided Graph500 (Scale 222 64 processes)
using parallelized InfiniBand communication

5 T W Communication e B Improvement =#=Harmonic Mean TEPS
Time Speedup tnlz 1.7E+06 1.4
4 ¥ Execution Time E 1.6E+06 -
53 § 156406 1.3 é
) S 1.4E+06)
a 2) 1.2 3
1 - g 1.2E+06 - 1.1 g
S 1.1E+06 |
0 - 1.0E+06 - 1.0
1 2 4 8 16 32 64 128 240 1 2 4 8 16 32 64
Number of Threads Number of Threads
OSU P2P BW
using parallelized shared memory communication
16
8 5.2
64 KB
o 4
S 2 256 KB
3 1
=3 1 MB
0.5 - e
0.25 O 4 M8
0.125 » =16 MB
1 2 4 8 16 32 64 120
Number of Threads
23

Min Si, Postdoc Interview, 2015-10-26

Argon ne°

NATIONAL LABORATORY

CASPER

Process-based Asynchronous Progress Model
for MPI RMA

Papers

1. “Casper: An Asynchronous Progress Model for MPI RMA on Many-Core Architectures.” M.
Si, A, Pena, J. Hammond, P. Balaji, M. Takagi, and Y. Ishikawa. IPDPS 2015.

2. “Scaling NWChem with Efficient and Portable Asynchronous Communication in MPI RMA.”
M. Si, A. J Pena, J. Hammond, P. Balaji, and Y. Ishikawa. CCGrid 2015.

3. “A Dynamic Adaptable Process-based Asynchronous Progress® Journal under preparation.

Invited Talk

1. “Casper: An Asynchronous Progress Model for MPI RMA on Many-core Architectures.” M. Si.
In The 2ed Workshop of INRIA-ILLINOIS-ANL-BSC Joint Laboratory on Extreme Scale
Computing, Chicago, USA, 2014

G < «x‘_\ U.S. DEPARTMENT OF
7 sy
.9/ ENERGY

Message Passing Models

= Regular two-sided communication = Irregular one-sided communication
(Remote Memory Access)

Process O Process 1 Process O Process 1

I 1 1 1

1 I .
. R (data) ’ N Co tion
dat 3)/ S ata) G) — '

Ac a) ——3I5 —
1
: i | |
Process O Process 1

a —
()?5 Con.tion
IDeIay

S B

Not TRULY asynchronous !

Non-contiguous Accumulate in MPI

25
Min Si, Postdoc Interview, 2015-10-26

Traditional Approaches of Asynchronous Progress

= Thread-based approach

— Every process has a
communication dedicated
background thread

— Background thread polls progress

Process 0 Process 1 Helper
' ! . thread
e Computation_ _
g g’_ - >:
«--~—~00 i
. | |
Cons:

X Waste 50% computing cores or
oversubscribe cores
X Overhead of multithreading safety

= Interrupt-based approach

— Assume all hardware resources
are busy with user computation
on target processes

— Utilize hardware interrupts to

awaken a kernel thread
Cons:

X Overhead of frequent interrupts

[any

Execution Time on Rank 0(ms)
O RPN WD UL N OO OO
Ny
\\
I I

:

100000
System Interrupts 90000

@==»Qriginal MPI 80000

== - 70000
- 60000 B
- 50000 £
- 40000 £
30000
20000
10000

0

-

1 4 16 64 256 1024
Number of Operations

DMMAP-based ASYNC overhead on Cray XC30

26
Min Si, Postdoc Interview, 2015-10-26

\ |
w

Casper Process-based ASYNC Progress

= Multi- and many-core architectures
— “Infinite cores”

— Not all of the cores are always keeping busy

= Process-based asynchronous progress
— Dedicating arbitrary number of cores to “ghost processes”

b — Ghost process intercepts all RMA operations to the user processes
ros:

v" No overhead caused by multithreading safety or frequent interrupts
v" Flexible core deployment

Ghost
% . . Process O Process 1
v" Portable PMPI" redirection | | Process
Process 0 Process 1 I I I
a——_Computation e

- =
“-°°
1

quutahon j‘>
1<_ - —MPPgall

Original communication Communication with Casper

27
S Min Si, Postdoc Interview, 2015-10-26

Basic Design of Casper

-
-

i ACC(GO, P1_offset + disp, += N
internal_win)

e

= Three primary functionalities MPI_COMM_WORLD
o 1 2 3 4
1. Transparently replace MPI_COMM_WORLD
by COMM_USER_WORLD . —
0 1 2
2. Shared memory mapping between local user COMM_USER_WORLD
and ghost processes by using MPI-3
MPI_Win_allocate_shared*. 3. Redirect RMA operations to ghost processes
Internal Memory mapping PO P1 Ghost Process
Gh for P1
Proé’;ts P1 P2 Lock(P1) ! ! !
P1 offset —f—rd----" < 1 1 : Re‘c_\!
Lock(GO) M TN
_=’—"’:" . . . I
P2 offset ~ ACC(P1, disp, user_win) Computation i
v A /
|
1
|
|

* MPI_WIN_ALLOCATE_SHARED : Allocates window that is shared among all processes in
the window’s group, usually specified with MPI_COMM_TYPE_SHARED communicator.

28
Min Si, Postdoc Interview, 2015-10-26

Challenges

" Ensuring Correctness and Performance
— Lock Permission Management
— Self Lock Consistency

— Managing Multiple Ghost Processes

: . MPICH
— Multiple Simultaneous Epochs
|
oo Rl "
Applications
Intel MPI
v’ Asynchronous progress MVAPICH

v Transparent & Portable
v' Correctness
v’ Performance

29
Min Si, Postdoc Interview, 2015-10-26

Evaluation on Cray XC30 (1)

Test scenario

RMA implementation in Cray MPI v6.3.1
Lock_all (win);

HW-handled OP ASYNC. mode for (dst=0; dst<nproc; dst++) {

OP(dst, double, cnt = 1, win);
Original mode NONE Thread Flush(dst, win);

3 o [% 3 *
DMAPP mode Contig. PUT/GET Interrupt | busy wait 100us; /*computing®/

Unlock_all (win)

Accumulate on Cray XC30 (SW) PUT on Cray XC30 (HW in DMAPP mode)

60 53.16- 18 17.04

= 50 e=t=»Qriginal MPI e=t=»Qriginal MPI

@ @ 15

£ “#=Thread-based async £ =@=Thread-based async /1n 24

GEJ 40 DMAPP (I based g 12

£ 20 LA (Interrupt-based async) § “=¥= DMAPP (HW PUT)
= 9

(] e Casper 17.22 (]

vy L _]

g 20 E'P . Casper 7.07
]

2 10 87 I 3

0 - 09 0 -

2 4 8 16 32 64 128 256
Number of Application Processes (ppn=1)

2 4 8 16 32 64 128 256
Number of Application Processes (ppn=1)

Casper provides asynchronous progress for

No impact on HW-handled operations.
SW-handled operations.

30
Min Si, Postdoc Interview, 2015-10-26

Evaluation on Cray XC30 (2)

= NWChem Quantum Chemistry Application

— Computational chemistry application suite composed of many types of

simulation capabilities.

— ARMCI-MPI (Portable implementation of Global Arrays over MPI
RMA)

NWChem

Global Arrays [1]

ARMCI : Communication interface for RMA[2]

S Communication Runtime Construction

Global Address Space

-

Physically distributed to different processes

AR

a

VALY,

[Hidden from user]

[1] http://hpc.pnl.gov/globalarrays

[2] http://hpc.pnl.gov/armci

31

Min Si, Postdoc Interview, 2015-10-26

Evaluation on Cray XC30 (3)

= Typical Get-Compute-Update mode in GA programming

N

$3 =
\ GET GET Accumulate
lock a block b block c
® L =

Perform DGEMM in local buffer

Pseudo code

foriin | blocks:
for j in J blocks:
for k in K blocks:
GET block a from A
GET block b from B
c +=a* b /[*computing*/
end do
ACC block cto C
end do
end do

32
Min Si, CCGrid2015 - Scale Challenge

Evaluation on Cray XC30 (4)

Core deployment (24 cores per node)

* “Gold standard” CCSD(T)

Original MPI 24 0
We are here Casper 20 .
O(N?)
¢ More accurac Thread-ASYNC ” ”
More comp O(N°) (oversubscribed)
N3 Thread-ASYNC
) (dedicated) - 12

NWChem CCSD(T) for W21=(H,0),, with pVDZ
= Water molecular (H,0) ,, o

18 —
< M Original MPI M Casper
15 BThread(0) M Thread(D)
glz T (1'2
Q 9 4 o0
£ Reduced !
= 6 - < ~N
) .
3 S
O —

1704 3072 6144 12288
Number of Cores

33

Min Si, Postdoc Interview, 2015-10-26

Summary

= Applications & hardware architectures are becoming more complex

= Parallelism & Resource sharing & Dynamic computation are important !

= Two most popular programming models used in modern applications

1. Hybrid MPI+Threads model

MPI Process Problem.

Many IDLE threads in COMM.

Single lightweight core
performs COMM.

OpenMP Threads

$5

2. One-sided programing

Problem:

5 =
| Lack asynchronous
progress in MPI

AT IR

Solutions

Multithreaded MPI
e Parallelizing MPI communication by
utilizing user IDLE threads

Process-based Asynchronous Progress
* Provide Portable & Efficient & Flexible
asynchronous progress for MPI RMA

34
Min Si, Postdoc Interview, 2015-10-26

Future Research Plan: BEEHIVE

(L 12
| | /ll | | /ll | 1 /ll | 1
f 2) 2] /7/
|/
7 . . _)
d 4 %
z v %
Over-decomposition ’ % f
q Beehive dynamic execution runtime
m: H Decoupling logical
tasks from
ZD_,physical cores

High Performance
g . I CPU CPU CPU CPU
* Intelligent latency hiding U LJ [] []

* Migration for better load balance

Fault Resilience Power Efficiency

e Lightweight checkpointing ¢ Computation and data

* Dynamic migration consolidation

35
Min Si, Postdoc Interview, 2015-10-26

Under investigation: Optimization for High Performance

= Intelligent Latency Hiding = Load Balancing
— Context switch when blocking in — Migrate processes from busy
communication / 10. core to relatively idle core

— Yield to a “Ready-To-Go” process

Process 0 i S
Process 0 Process 1
. - Process 5
: Process 6
|
: Process 1 Process 7
|

Process 2

Hide latency Migrate To

CPU
core

Process 3

36
6 DOE-MEXT Meeting Sep. 11, 2015

Thank you

Exascale
A

Application

Complexity 100Petascale

10Petascale

Petascale

>
Hardware Complexity

37
Min Si, Postdoc Interview, 2015-10-26

Argg[ome°

NAL LABORATORY

Backup Slides

gg ' U.S. DEPARTMENT OF
@) ENERGY

Selected Publications

MPI optimization for many-core architectures (Ph.D. research)

1. “Scaling NWChem with Efficient and Portable Asynchronous Communication in MPI RMA.”
M. Si, A. J Pefia, J. Hammond, P. Balaji, and Y. Ishikawa. CCGrid 2015.

2. “Casper: An Asynchronous Progress Model for MPI RMA on Many-Core Architectures.” M. Si,
A, Pena, J. Hammond, P. Balaji, M. Takagi, and Y. Ishikawa. IPDPS 2015.

3. “MT-MPI: Multithreaded MPI for Many-core Environments.” M. Si, A, Pena, P. Balaji, M.
Takagi, and Y. Ishikawa. ICS 2014.

Low level communication facility for many-core architectures (Master research)

5. “Direct MPI Library for Intel Xeon Phi Co-Processors.” M. Si, M. Takagi, and Y. Ishikawa. In
Parallel and Distributed Processing Symposium Workshops PhD Forum (IPDPSW) 2013.

6. “Design of Direct Communication Facility for Many-Core Based Accelerators.” M. Siand Y.
Ishikawa. In Parallel and Distributed Processing Symposium Workshops PhD Forum (IPDPSW)
2012.

Node 1 M Node 2
any-core |
‘ memo

Host Many Host
memol Core memo!

Host PCI Express I Host

CPU CPU

A

| InfiniBan -

39
Min Si, Postdoc Interview, 2015-10-26

Guaranteed Idle Threads VS Temporarily Idle Threads

" Guaranteed Idle Threads " Temporarily Idle Threads
— Guaranteed idle until Current — Current thread does not
threadnexits know when it may become
i activecagapne 3
#pragma omp parallel l
{ _
IO single a{#pragma omp parallel 1
e NN #pragma omp single nowait
} {...
i)
Example 2 #pragma omp critical .()
| (~
#pragma omp parallel }[}
{ ML |
#pragma omp critical
{.I v
}
}

40

Min Si, Postdoc Interview, 2015-10-26

\ |
w

Expose Guaranteed Idle Threads

= MPI uses Guaranteed Idle Threads to schedule its internal
parallelism efficiently (i.e. change algorithm, specify number
of threads)

#pragma omp parallel
#pragma omp single
{
MPI_Function {
num_idle_threads = omp_get num_guaranteed_idle_threads();
if (num_idle_threads <N) {
/* Sequential algorithm */

} else {
#pragma omp parallel num_threads(num_idle_threads)
{..}

}

41
Min Si, Postdoc Interview, 2015-10-26

\ |
w

Sequential Pipelining VS Parallelism

= Small Data transferring (< 128K)

— Threads synchronization overhead > parallel improvement

" Large Data transferring

— Data transferred using Seauential Fine-Grained Pjpelining

Sender Buffer l l l l
Shared Buffer - M - v \
N Receiver Buffer
— Data ° " “only a few of threads (worse)
| |||
VV ViV

| | | |
VvV VvV

— Data transferred using Parallelism with many threads (better)

B o

42
Min Si, Postdoc Interview, 2015-10-26

NWChem CCSD(T) Profiling

Internal steps in CCSD(T) task

Self-consistent field (SCF)

Four-index transformation (4-
index)

CCSD iteration

(T) portion

(T) Portion profiling for W,, with Original MPI

E RMA B DGEMM
16
14
12
10
8
6
: -
2
) | | -
1704 3072 6144 12288

Number of Cores

CCSD(T) internal steps in varying water problems

100%
80%
60%

)
E
= 40%

20% -

0%

M 4-index MCCSD M (T) portion H Others

W16 w21

Problem Sizes
B DGEMM

B RMA & Sort

20

6.6

15

Tune (h)
[
o

(92

8.1

0

Original Casper Thread (O)Thread (D)

MPI

43
Min Si, Postdoc Interview, 2015-10-26

