
Challenges and Opportunities
in Co-Design for High-Performance

Computing Software Systems

Min Si
Argonne National Laboratory, USA

REBASE Talk at SPLASH 2020
2020-11-20

HPC for Scientific Computing and Beyond

§ High-performance computing (HPC) systems are designed for
pursuing extreme-scale parallelism and computational power

REBASE Talk at SPLASH 2020 2
Aurora Supercomputer at ALCF. Image adapted from alcf.anl.gov

Genome Analysis.
Image adapted from National Human
Genome Research Institute

Simulation of the atomization process at
energy production.
Image adapted from https://hpc4mfg.llnl.gov/

§ Supports computational-expensive
simulations as well as data-intensive analysis
for scientific discovery and industry innovation
§ Aerospace: airframes and jet turbines simulations
§ Energy: nuclear power, battery innovation
§ Quantum advances: molecular system simulations
§ Health care: precision medicine, genome analysis
§ Manufacturing: smart manufacturing,

computational fluid dynamics simulations

§ ...

Trend of HPC Architecture

§ End of Moore’s Law
§ From single-core frequency to multi/many-core parallelization
§ From performance to performance per watt

REBASE Talk at SPLASH 2020 3

Software
Complexity

Hardware Complexity

Terascale
Petascale

Exascale

100Petascale

10Petascale

ASCI Red, 1996
Intel Xeon

Roadrunner, 2008
Hybrid IBM Power+AMD CPUs

Aurora, 2021
Intel Xeon CPU, GPU, HBM,
DRAM, Pmem

Mira, 2012
IBM Power

Tianhe-2, 2013
Intel Xeon+ Xeon Phi

Summit, 2018
IBM Power+ Nvidia GPU, HBM,
DRAM, NVRAM

Deep and Wide Software Stack

§ Complex computational
requirements from applications

– Compute-bound v.s. memory-bound
v.s. IO-bound

– Bulk synchronous parallel v.s. data-
driven

– Simulation v.s. AI/ML/DL training &
inference

§ Diverse capacities provided by
underlying hardware

– Massive on-node parallelism
– CPU+GPU
– Interconnects protocol and topology
– Parallel file systems

4

Application Software Stack

Scientific Simulations
(e.g., NWChemEx, LAMMPS)

AI/ML/DL
(e.g., TensorFlow, PyTorch)

Parallel Algebraic Systems
(e.g., PETSc, Intel MKL)

Communication I/O

High-level Frameworks
(e.g., Kokkos)

Operating Systems and OS level tools (Linux, McKernel, Argo...)

Threads

Compilers: C++, C, Fortran Executable
Binary

MPI

OFI UCX

OpenMP

Pthreads ULT

PGAS

ACC

OpenCL

CUDA

HDF5

MPI I/O

POSIX I/O

OpenACC

REBASE Talk at SPLASH 2020

Deep HPC Stack: NWChem [1]

§ High performance computational chemistry application suite
§ Quantum level simulation of molecular systems

– Very expensive in computation and data movement, so is used for small systems
– Larger systems use molecular level simulations

§ Composed of many simulation capabilities
– Molecular Electronic Structure
– Quantum Mechanics/Molecular Mechanics
– Pseudo potential Plane-Wave Electronic Structure
– Molecular Dynamics

§ Very large code base
– 4M LOC; Total investment of ~1B $ to date

[1] M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma, H.J.J. van Dam, D. Wang, J. Nieplocha, E. Apra, T.L.
Windus, W.A. de Jong, "NWChem: a comprehensive and scalable open-source solution for large scale molecular
simulations" Comput. Phys. Commun. 181, 1477 (2010)

Water (H2O)21

Carbon C20

REBASE Talk at SPLASH 2020 5

Deep HPC Stack: NWChem

§ Deep software stack of NWChem
– Global Arrays defines the abstraction

of distributed arrays
– ARMCI defines the multidimensional

array-oriented communication interface
for Global Arrays

– ARMCI-MPI is a port of ARMCI based
on MPI-3 RMA

– MPI defines data elements-oriented
data transfer

– OFI/UCX provides low-level bytes-level
data transfer for different interconnects

REBASE Talk at SPLASH 2020 6

ARMCI : Communication interface

IB DMMAP

…

MPI

ARMCI-MPI

Distributed Array
Abstraction

Global Address Space

Physically distributed to
different nodes Global Arrays

NWChem Application Package

OFI UCX

Performance Challenges in NWChem Deep Stack

§ Typical Get-Compute-Update algorithm for matrix-matrix multiplication
§ Applied to multi-dimensional tensors in NWChem

REBASE Talk at SPLASH 2020 7

for i in I blocks:
for j in J blocks:

for k in K blocks:
GET block a from A
GET block b from B
c += a * b /*computing*/

end do
Update block c to C

end do
end do

Pseudo code of C += A x B

Demonstrating Get-Compute-Update mode on 2D matrix
(Note: NWChem computes on multi-dimensional tensors)

UPDATEGETGET

Compute DGEMM in local buffer

Global Arrays

ARMCI-MPI

MPI RMA

Software Stack

OFI

NWCHEM

Performance Challenges in NWChem Deep Stack

§ Insufficient implementation attributes exposed
from low level runtime

– Unaware of software-emulated RMA in
MPI/OFI

– Caused extremely expensive data movement
in NWChem critical path

§ Insufficient computation/communication
characteristics shared by application

– Some app phases involve dense data
movement, but some others are sparse

– Runtime is unaware of such characteristics,
cannot make fine-grained resource
adjustment

8

0
2
4
6
8

10
12
14
16

1704 3072 6144 12288

Ti
m

e
(h

)

Number of Cores

RMA DGEMM

50% Time idling caused
by RMA communication!

Overhead breakdown for computation-intensive O(N7)
tensor contraction in “Gold standard” CCSD(T) with large

Water-21 problem (NERSC Edison)

Process 0 Process 1
+=

DGEMM
RMA

MPI callDelay

Software-emulated
MPI RMA

Global Arrays

ARMCI-MPI

MPI RMA

OFI

NWCHEM

0

40

80

120

160

200

0 1 2 4 8 12 24

Ta
sk

 T
im

e
(m

in
)

Cores Dedicated to COMM
for Async RMA Processing

4-index CCSD iteration
(T) portion SCF and Other

Internal phases of NWChem CCSD(T)

Suboptimal perf of CCSD(T) with varying number of COMM-
dedicated cores with Tetracene problem (NERSC Edison)

Tradeoff: no option can deliver
best perf for all phases!

REBASE Talk at SPLASH 2020

Wide HPC Stack: QMCPACK [1][2]

§ Quantum Monte Carlo Simulation for
Material Science

§ Enable multiple simulation capabilities for
electronic structure problems

– Auxilary Field Monte Carlo
– Variational Monte Carlo
– Diffusion Monte Carlo
– Backflow wavefunctions
– All electron and non-local pseudopotential

calculations
– ...

[1] J. Kim et al. QMCPACK: an open source ab initio quantum Monte Carlo package
for the electronic structure of atoms, molecules and solids. Journal of Physics:
Condensed Matter (2018).
[2] qmcpack.org

Image adapted from qmcpack.org

REBASE Talk at SPLASH 2020 9

Wide HPC Stack: QMCPACK

§ Size of physical system to simulate is bound by memory capacity
– Memory space dominated by large replicated ensemble tables (Gbytes and up)
– Regular communication pattern

• All processes finish their local computation, and then exchange data

§ Hybrid MPI+OpenMP+CUDA
– Share large ensemble table among threads on single node
– Use MPI processes for inter-node communication
– Recent updates for leveraging NVIDIA GPU acceleration

10

MPI Process

Replicated Ensemble Data

W W
W W
Thread

W W
W W
Thread

W W
W W
Thread

W W
W W
Thread

Exchange
Walkers

Global
Reduction

MPI OpenMP CUDA

MPI Process

Replicated Ensemble Data

W W
W W
Thread

W W
W W
Thread

W W
W W
Thread

W W
W W
Thread

QMCPACK

REBASE Talk at SPLASH 2020

Performance Challenges in QMCPACK Wide Stack

§ Lack of interoperability between runtime libraries
– MPI and OpenMP runtimes in the QMCPACK example
– Similar issues also exist between many other on-node parallelism and off-node

communication libraries too!

11

Network Hardware (support multiple contexts)

Multiple Threads

Internal Critical Section

Object pools
e.g., requests

Message queues

Application

MPI runtime

• Expensive lock
contention

• Only limit #cores
can post data
concurrently

• low utilization of
network resources

MPI Process

OMP COMP.

OMP COMP.

MPI COMM.

• Funneled mode: only master
thread can call MPI

• Large amount of IDLE threads
• Single core delivers poor

performance especially on low-
freq core (e.g., Xeon Phi)

– Convenient MPI Funneled mode
delivers suboptimal communication

– MPI Multithreading mode still cannot enable
parallelism in communication due to limitation
of mainstream MPI implementations

Inefficient core utilization in
MPI+OpenMP with funneled mode

Serialized communication in
MPI+OpenMP with multithreading modeREBASE Talk at SPLASH 2020

Deep and Wide HPC Stack: Co-Design is the Key

§ Abstraction allowed developers and researchers to concentrate on innovations of
individual software components

– Good aspects: simplify problem, achieve generalization/component reuse
– Drawbacks: lack of information sharing/coordination caused suboptimal performance

§ Software-level exascale and beyond truly relies on full utilization of all
computation/communication resources!

§ Co-design is the key to minimize suboptimal resource utilization, thus enabling
system full scale performance

REBASE Talk at SPLASH 2020 12

CO-DESIGN SHOWCASES
IN SOFTWARE STACK

Showcase 1: Co-Design for Communication Resource Management

§ Application – Communication Runtime Co-Design
– Address suboptimal communication in NWChem

• Application is unaware of software-emulated RMA in MPI/OFI
• Caused extremely expensive data movement in critical path

– Casper: a portable progress management layer on top of MPI
• Manage communication progression in software, deliver same level of performance as

that from network HW-handled RDMA

REBASE Talk at SPLASH 2020 14

Global Arrays

ARMCI-MPI

MPI RMA

NWChem SW Stack

NWCHEM

Process 0 Process 1
+=

DGEMM
RMA

MPI callDelay

Lack of async progress in
software-emulated MPI RMA

Optimized NWChem SW Stack

Casper

Global Arrays

ARMCI-MPI

NWCHEM

MPI RMA

Process 0 Process 1

DGEMMRMA
Ghost P

Enable truly async RMA in
Casper + MPI RMA

Adaptive Communication Resource Management in Casper

§ Most data movement today still relies on CPU resources due to limited capability
of network hardware (e.g., NIC)

– E.g., cannot process communication-driven computation with noncontiguous data layout
– The software has to tradeoff CPU resources for computation and communication requests

• Root cause of inefficient data movement in NWChem!

§ Managing CPU resources in multiphase applications is challenging!

REBASE Talk at SPLASH 2020 15

G

G

G

G

Heavy COMP Phase
Utilize only single
progress core for COMM

Heavy COMM Phase
Assign more progress
cores for COMM

– Computation-heavy phase prefers to
assign only a few number of cores to
communication, thus the other cores can be
used to speedup heavy computation

– Communication-heavy phase requires
more cores for communication progress;
otherwise COMM. bottleneck may occur

– Such application performance
characteristics is not exposed to runtime!

NWChem with Adaptable Communication Resource Management

§ Studied two approaches:
– Application-guided approach: application specifies the need of communication progress
– Automatic runtime profiling approach: runtime inserts timers to predict the need of

communication progress

§ Both worked for NWChem but app-guided approach delivers the best
performance

REBASE Talk at SPLASH 2020 16

58.9
33.6 33.4 36.6 60.7 53.9

23.2
30.7 24.8 24.7

25.1 31.7
30.1

80.1

29.6 31.5
33.2

21.6

0
20
40
60
80

100
120
140
160

Orignal
MPI

Casper
(2-static)

Casper
(User-guide)

Casper
(SelfProf)

Thread
(Dedicate)

Thread
(OverSub)

Ta
sk

 T
im

e
(m

in
)

4-index CCSD iteration (T) portion SCF and Other App-guided adaptation:
• Immediate adaptation
• Optimal result

Self-profiling-based adaptation:
• Might be delayed because it relies on user

synchronization point, or periodical global
synchronization

• Additional overhead caused by
background synchronization/profiling
(already highly optimized runtime)

Apply adaptive communication resource management to
CCSD(T) with Tetracene problem (NERSC Edison)

What Can Be Done Better?

§ Suboptimal communication patterns (or data locality) can be detected by runtime
techniques

– Aggregated data transfer was detected in NWChem (a high-optimized application package)
– Too complex to ensure perfect data locality in application algorithms

§ Can runtime coordinate with the application layers to dynamically improve data
locality?

– Co-design is essential!

REBASE Talk at SPLASH 2020 17

0

2

4

6

8

10

12

14

16

0 50 100 150 200 250 300 350

Ta
rg

et
No

de

Nth Issued Operation

Target Distribution in 4-Index Acc Operation
(Every point serial indicates an origin process)

Nth issued operation

Re
m

ot
e

da
ta

 lo
ca

tio
n

Suboptimal Data Accessing/Computing
(Every point serial indicates an MPI process)

0

2

4

6

8

10

12

14

16

0 50 100 150 200 250 300 350

Ta
rge

t N
od

e

Nth Issued Operation

Target Distribution in 4-Index Get Operation
(Every point serial indicates an origin process)

�

Evenly Distributed (Optimal) Data Accessing

• Data are transferred to the same
or nearby nodes

• Caused communication hotspots
(i.e., network congestion,
insufficient CPU resources)

Take Away from Communication Resource Management

§ Efficient utilization of HPC resource requires full understanding and coordination
between multiple software layers

– Understand the behavior of application (e.g., data distribution of global array,
communication/computation workload)

– Understand cost of communication in low level runtime (e.g., HW Get/Put, SW ACC on
RDMA network)
• Limited by hardware capabilities (e.g., RDMA, network topology, computing power on

NIC)

§ Smart NIC will be the ideal solution?
– All communication-driven computation can be offloaded to powerful computing units on NIC
– Requirement to network hardware innovation

REBASE Talk at SPLASH 2020 18

Showcase 2: Co-Design for MPI and Threads Runtime Coordination

§ Runtime – Runtime Co-Design in hybrid MPI + X mode
– Focus on MPI+OpenMP runtime coordination in the QMCPACK example
– MT-MPI: Parallelizing MPI internal processing by utilizing user IDLE threads shared

from application
• Opportunity: Many MPI internal tasks can be parallelized by threads (e.g., using OMP)
• Key challenge: MPI runtime is unaware of the idleness of threads during the call of MPI!
• Require thread idleness info (e.g., how many threads are idle?) exposed from

OpenMP

REBASE Talk at SPLASH 2020 19

MPI Process

OMP COMP.

OMP COMP.

MPI COMM. MPI COMM.
MPI OpenMP

QMCPACK

Thread idleness detection in MT-MPI

§ Algorithm trade off
– Modify MPI internal algorithms for better parallelization
– Parallel algorithms might not be efficient with insufficient

#threads
– Need tradeoff between parallel / sequential versions

according to number of IDLE threads
§ Nested parallelism

– Nested parallel region if MPI call is inside user parallel
region

– Simply creates new Pthreads, and offloads thread
scheduling to OS

– Need manual guidance to avoid thread oversubscription
using number of IDLE threads

§ Number of IDLE threads at MPI runtime is UNKNOWN!
§ Our solution: keep track on thread idleness at OMP

runtime and expose such info to MPI

REBASE Talk at SPLASH 2020 20

MPI_Function (…)
{

/* Parallel algorithm */
#pragma omp parallel for
{…}

}

if (num_idle_threads < N)
{ /* Sequential algorithm */ }

else
{ /* Parallel algorithm */ }

20

#pragma omp parallel
#pragma omp single
{

MPI_Function()
{

#pragma omp parallel
{…}

}
}

Creates N Pthreads !

Creates N Pthreads !

num_threads (num_idle_threads)

Performance of MPI Communication with Cross Runtime Coordination

§ Parallelizes various aspects of the MPI processing

0.125

0.25

0.5

1

2

4

8

1 2 4 8 16 32 64 120

64K

256K

1M

4M

16M

Number	of	Threads

Ba
nd
w
id
th
			S
pe
ed
up

Intra-node Large Message
Communication

0.5

1

2

4

8

16

32

64

128

256

1 2 4 8 16 32 64 128 240

256
1K
4K
16K
64K
256K
Ideal

Number	of	Threads

Sp
ee
du
p

Derived Data Type
Packing Processing

5.6

5.8

6

6.2

6.4

6.6

6.8

140000

145000

150000

155000

160000

165000

170000

175000

180000

1 2 4 8

Harmonic Mean TEPS
Mean Time

M
ean	Tim

e	(sec)

H
ar
m
on
ic
	M
ea
n	
TE
PS

Number	of	Threads

Data Posting to IB
Network

* 2D double elements matrix local packing * OSU P2P benchmark * Graph500 benchmark (MPI oneside version)
using 9 MPI processes

Shared Buffer

Cell[0]

Cell[1]

Cell[2]

Cell[3]

User
Buffer

User
Buffer

Sender Receiver

HCA

CQ

IB CTX

QP QP QP

• 1 KNC per node
• 56 GB/s FDR IB
• KNC native mode
• 1 MPI process per KNC

REBASE Talk at SPLASH 2020 21

Take Away from Cross-Runtime Coordination

§ Computing resources (e.g., CPUs, GPUs) are shared by coexisting runtime
subsystems

§ Ways to make efficient use across libraries is under investigation
– MPI + OpenMP
– MPI + GPU

§ Low-level resource management facility might be beneficial?
§ Cross library/programming model interoperability plays the essential role

– E.g., OpenMP runtime exposes thread idleness to the other runtime subsystem

REBASE Talk at SPLASH 2020 22

Showcase 3: Co-Design for Low-Overhead Multithreading
Communication
§ Multiprocess model (e.g., MPI, PGAS)

– Independent Virtual Address Space
(VAS) and privatized variable sets

– Limitation: Inefficient intercore
communication & data sharing (e.g.,
message passing)

– Techniques to enable memory mapping
• POSIX shmem:

– Explicit allocation (e.g., mmap)
– Heap only

• XPMEM:
– Linux kernel module
– Explicit & expensive exposing

§ Multithread model (e.g., OpenMP)
– Shared VAS and shared variable sets
– Limitation: Contention between threads

on shared variables
• E.g., expensive multithreading safety

when integrating with process-based
model such as MPI

REBASE Talk at SPLASH 2020 23

• It is known in the HPC community that
multithreading MPI does not perform well!

• Have to use only single thread to call MPI
• Inefficient core utilization as discussed in

MT-MPI casestudy

PiP: HPC-Specialized “Thread” Implementation

§ Co-design of runtime system and low-level OS libraries
§ Process-in-Process (PiP): a special combined execution model

– A process can access data owned by other processes w/o overhead (shared VAS)
– Variable sets are privatized by default, avoid unnecessary contention
– Get the good aspects of both multiprocess and multithread modes!

REBASE Talk at SPLASH 2020 24

MPI OpenMP

PiP (Low-level OS library)

TEXT

DATA & BSS

HEAP

STACK

...

Proc 0

Proc 1

Shared VAS in PiP

Proc 2

Using PiP to Address Multithreading Limitations in MPI

§ Original Hybrid MPI+Threads
– Easy data sharing across cores
– Drawback: inefficient interaction with

process-based runtime (e.g., MPI):

§ Hybrid MPI+PiP
– Use PiP tasks as the underlying support

for multithreading runtime (e.g.,
OpenMP), similar to Pthreads

– Isolated MPI stacks similar to processes

REBASE Talk at SPLASH 2020 25

Network Hardware (support multiple contexts)

Multiple PiP tasks

Rank 0

Application

MPI runtime

Rank 1 Rank 2 Rank 3

Network Hardware (support multiple contexts)

Multiple Threads

Internal Critical Section

Object pools
e.g., requests

Message queues

Application

MPI runtime

• Expensive lock
contention

• Only limit #cores
can post data
concurrently

• low utilization of
network resources

Serialized communication in
MPI+OpenMP with multithreading mode

Performance Showcase with HPC-Specialized “Thread”

REBASE Talk at SPLASH 2020 26

1
4

16
64

256
1024
4096

16384
65536

1 4 16 64 25
6 1K 4K 16
K

64
K

25
6K 1M 4M

Message Size (Bytes)

KMessages/s between threads

1
4

16
64

256
1024
4096

16384
65536

1 4 16 64 25
6 1K 4K 16
K

64
K

25
6K 1M 4M

Message Size (Bytes)

KMessages/s between PiP tasks

1-Pair
4-Pairs
16-Pairs
64-Pairs

Multipair message rate (osu_mbw_mr) between two OFP nodes

Improved MR
with more
pairs

Lock
contention
overhead

Low utilization of
network
resources

Oakforest-PACS (Rank 9 in Top500 2017/11)
• Intel Xeon Phi 7250 68C 1.4GHz (KNL)
• Intel Omni-Path
• MPICH v3.3a3 (with two-level priority lock optimization)

PiP V.S. threads in hybrid MPI+OpenMP SNAP
Particle Transport Proxy Application

1.59
1.71 1.69

2.24
2.53

3.31
3.78

0

1

2

3

4

0

200

400

600

800

16 32 64 128 256 512 1024

So
lv

e
Ti

m
e

(s
)

Number of Cores

MPICH/Threads MPICH/PiP Speedup (PiP vs Threads)

Showcase 4: Specialized OS for HPC

§ Mckernal (developed by RIKEN, Japan)
§ Innovative OS for Fugaku, the Japanese

exascale supercomputer
§ Light-weight multi kernel operating system

designed specifically for HPC
– Scalable execution of large-scale parallelism
– Provide efficient memory/device management to

minimize resource contention and data
movement

– Eliminate OS noise by isolating OS services in
Linux and provide jitter free execution on the
light-weight kernel

– Support full POSIX/Linux APIs by selectively
offloading system calls to Linux

REBASE Talk at SPLASH 2020 27

Image adapted from www.sys.r-ccs.riken.jp

Near Future in HPC: SW/HW Full-Stack Co-Design is Going to Be The Norm!

§ Emerging convergence of HPC and AI
– Example: the DOE-NCI CANDLE project

• Integrate deep learning and simulation to enable
precision medicine for cancer

• Understand disease by using growing volumes and
diversity of cancer related data

• Provide guidance on treatments strategy for
individual patients

• Leverage supercomputing systems for large
memory capacity and fast floating point
computation

§ Future HPC systems for HPC/AI
– How much computational power do we expect for

traditional scientific simulation?
– How much for inference-like data processing?
– Integrate AI-inspired HW into the classical HPC

system?
– Application, programming model, runtime?

REBASE Talk at SPLASH 2020 28

HPE DPE. Image
adapted from [1].

Ras-Driven Cancer.
Image by David
Kashatus/National
Cancer Institute/Univ.
of Virginia Cancer
Center.

Google Edge
TPU. Image
adapted from
medium.com

Mythic IPU. Image
adapted from
silvertonconsulting.co
m

Hybrid
chip for
HPC ?

Challenges and Opportunities in Co-Design for HPC Software

§ HPC is powerful but brings one of the most complex software/hardware stack in
computer science

§ The architecture is going to be more and more heterogeneous due to diverse
demands from applications and the limitations of performance, performance per
watt, performance per cost...

§ Co-design has shown early success and will be the norm in Exascale Computing
era and beyond!

REBASE Talk at SPLASH 2020 29

Exascale Computing Project Co-design Centers: integrate the
rapidly developing software stack with emerging hardware
technologies while developing software components that
embody the most common application motifs.

