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HPC for Scientific Computing and Beyond

§ High-performance computing (HPC) systems are designed for 
pursuing extreme-scale parallelism and computational power
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Aurora Supercomputer at ALCF. Image adapted from alcf.anl.gov

Genome Analysis. 
Image adapted from National Human 
Genome Research Institute

Simulation of the atomization process at
energy production.
Image adapted from https://hpc4mfg.llnl.gov/

§ Supports computational-expensive 
simulations as well as data-intensive analysis 
for scientific discovery and industry innovation
§ Aerospace: airframes and jet turbines simulations
§ Energy: nuclear power, battery innovation
§ Quantum advances: molecular system simulations
§ Health care: precision medicine, genome analysis 
§ Manufacturing: smart manufacturing, 

computational fluid dynamics simulations

§ ...



Trend of HPC Architecture

§ End of Moore’s Law
§ From single-core frequency to multi/many-core parallelization
§ From performance to performance per watt
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Deep and Wide Software Stack

§ Complex computational 
requirements from applications

– Compute-bound v.s. memory-bound 
v.s. IO-bound

– Bulk synchronous parallel v.s. data-
driven

– Simulation v.s. AI/ML/DL training & 
inference

§ Diverse capacities provided by 
underlying hardware

– Massive on-node parallelism
– CPU+GPU
– Interconnects protocol and topology
– Parallel file systems 
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Deep HPC Stack: NWChem [1]

§ High performance computational chemistry application suite
§ Quantum level simulation of molecular systems

– Very expensive in computation and data movement, so is used for small systems
– Larger systems use molecular level simulations

§ Composed of many simulation capabilities
– Molecular Electronic Structure
– Quantum Mechanics/Molecular Mechanics
– Pseudo potential Plane-Wave Electronic Structure
– Molecular Dynamics

§ Very large code base
– 4M LOC; Total investment of ~1B $ to date

[1] M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma, H.J.J. van Dam, D. Wang, J. Nieplocha, E. Apra, T.L. 
Windus, W.A. de Jong, "NWChem: a comprehensive and scalable open-source solution for large scale molecular 
simulations" Comput. Phys. Commun. 181, 1477 (2010)

Water (H2O)21

Carbon C20
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Deep HPC Stack: NWChem

§ Deep software stack of NWChem
– Global Arrays defines the abstraction 

of distributed arrays
– ARMCI defines the multidimensional 

array-oriented communication interface
for Global Arrays

– ARMCI-MPI is a port of ARMCI based 
on MPI-3 RMA

– MPI defines data elements-oriented 
data transfer

– OFI/UCX provides low-level bytes-level 
data transfer for different interconnects
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Performance Challenges in NWChem Deep Stack

§ Typical Get-Compute-Update algorithm for matrix-matrix multiplication
§ Applied to multi-dimensional tensors in NWChem
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for i in I blocks:
for j in J blocks:

for k in K blocks:
GET block a from A
GET block b from B
c += a * b /*computing*/

end do 
Update block c to C

end do
end do

Pseudo code of C += A x B

Demonstrating Get-Compute-Update mode on 2D matrix
(Note: NWChem computes on multi-dimensional tensors)

UPDATEGETGET

Compute DGEMM in local buffer 

Global Arrays

ARMCI-MPI

MPI RMA

Software Stack

OFI

NWCHEM



Performance Challenges in NWChem Deep Stack

§ Insufficient implementation attributes exposed 
from low level runtime

– Unaware of software-emulated RMA in 
MPI/OFI

– Caused extremely expensive data movement 
in NWChem critical path

§ Insufficient computation/communication 
characteristics shared by application

– Some app phases involve dense data 
movement, but some others are sparse

– Runtime is unaware of such characteristics, 
cannot make fine-grained resource 
adjustment
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Wide HPC Stack: QMCPACK [1][2]

§ Quantum Monte Carlo Simulation for
Material Science

§ Enable multiple simulation capabilities for 
electronic structure problems

– Auxilary Field Monte Carlo
– Variational Monte Carlo
– Diffusion Monte Carlo
– Backflow wavefunctions
– All electron and non-local pseudopotential 

calculations
– ...

[1] J. Kim et al. QMCPACK: an open source ab initio quantum Monte Carlo package 
for the electronic structure of atoms, molecules and solids. Journal of Physics: 
Condensed Matter (2018).
[2] qmcpack.org

Image adapted from qmcpack.org
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Wide HPC Stack: QMCPACK

§ Size of physical system to simulate is bound by memory capacity
– Memory space dominated by large replicated ensemble tables (Gbytes and up)
– Regular communication pattern

• All processes finish their local computation, and then exchange data

§ Hybrid MPI+OpenMP+CUDA
– Share large ensemble table among threads on single node
– Use MPI processes for inter-node communication
– Recent updates for leveraging NVIDIA GPU acceleration
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Performance Challenges in QMCPACK Wide Stack

§ Lack of interoperability between runtime libraries
– MPI and OpenMP runtimes in the QMCPACK example
– Similar issues also exist between many other on-node parallelism and off-node 

communication libraries too!
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Network Hardware (support multiple contexts)

Multiple Threads

Internal Critical Section

Object pools 
e.g., requests

Message queues

Application

MPI runtime

• Expensive lock 
contention

• Only limit #cores 
can post data 
concurrently

• low utilization of 
network resources

MPI Process

OMP COMP.

OMP COMP.

MPI COMM.

• Funneled mode: only master
thread can call MPI

• Large amount of IDLE threads
• Single core delivers poor 

performance especially on low-
freq core (e.g., Xeon Phi)

– Convenient  MPI Funneled mode 
delivers suboptimal communication

– MPI Multithreading mode still cannot enable 
parallelism in communication due to limitation 
of  mainstream MPI implementations

Inefficient core utilization in 
MPI+OpenMP with funneled mode

Serialized communication in 
MPI+OpenMP with multithreading modeREBASE Talk at SPLASH 2020



Deep and Wide HPC Stack: Co-Design is the Key

§ Abstraction allowed developers and researchers to concentrate on innovations of 
individual software components

– Good aspects: simplify problem, achieve generalization/component reuse
– Drawbacks: lack of information sharing/coordination caused suboptimal performance

§ Software-level exascale and beyond truly relies on full utilization of all 
computation/communication resources!

§ Co-design is the key to minimize suboptimal resource utilization, thus enabling
system full scale performance
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CO-DESIGN SHOWCASES
IN SOFTWARE STACK 



Showcase 1: Co-Design for Communication Resource Management

§ Application – Communication Runtime Co-Design
– Address suboptimal communication in NWChem

• Application is unaware of software-emulated RMA in MPI/OFI
• Caused extremely expensive data movement in critical path

– Casper: a portable progress management layer on top of MPI
• Manage communication progression in software, deliver same level of performance as 

that from network HW-handled RDMA
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Adaptive Communication Resource Management in Casper

§ Most data movement today still relies on CPU resources due to limited capability 
of network hardware (e.g., NIC)

– E.g., cannot process communication-driven computation with noncontiguous data layout
– The software has to tradeoff CPU resources for computation and communication requests

• Root cause of inefficient data movement in NWChem!

§ Managing CPU resources in multiphase applications is challenging!
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– Computation-heavy phase prefers to 
assign only a few number of cores to 
communication, thus the other cores can be 
used to speedup heavy computation

– Communication-heavy phase requires 
more cores for communication progress; 
otherwise COMM. bottleneck may occur

– Such application performance 
characteristics is not exposed to runtime!



NWChem with Adaptable Communication Resource Management

§ Studied two approaches:
– Application-guided approach: application specifies the need of communication progress 
– Automatic runtime profiling approach: runtime inserts timers to predict the need of 

communication progress

§ Both worked for NWChem but app-guided approach delivers the best 
performance
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What Can Be Done Better?

§ Suboptimal communication patterns (or data locality) can be detected by runtime 
techniques

– Aggregated data transfer was detected in NWChem (a high-optimized application package)
– Too complex to ensure perfect data locality in application algorithms

§ Can runtime coordinate with the application layers to dynamically improve data 
locality?

– Co-design is essential!
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Take Away from Communication Resource Management

§ Efficient utilization of HPC resource requires full understanding and coordination 
between multiple software layers

– Understand the behavior of application (e.g., data distribution of global array, 
communication/computation workload)

– Understand cost of communication in low level runtime (e.g., HW Get/Put, SW ACC on 
RDMA network)
• Limited by hardware capabilities (e.g., RDMA, network topology, computing power on 

NIC)

§ Smart NIC will be the ideal solution?
– All communication-driven computation can be offloaded to powerful computing units on NIC
– Requirement to network hardware innovation
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Showcase 2: Co-Design for MPI and Threads Runtime Coordination

§ Runtime – Runtime Co-Design in hybrid MPI + X mode
– Focus on MPI+OpenMP runtime coordination in the QMCPACK example
– MT-MPI: Parallelizing MPI internal processing by utilizing user IDLE threads shared 

from application 
• Opportunity: Many MPI internal tasks can be parallelized by threads (e.g., using OMP)
• Key challenge: MPI runtime is unaware of the idleness of threads during the call of MPI!
• Require thread idleness info (e.g., how many threads are idle?) exposed from

OpenMP
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OMP COMP.
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Thread idleness detection in MT-MPI

§ Algorithm trade off
– Modify MPI internal algorithms for better parallelization
– Parallel algorithms might not be efficient with insufficient 

#threads 
– Need tradeoff between parallel / sequential versions 

according to number of IDLE threads
§ Nested parallelism

– Nested parallel region if MPI call is inside user parallel 
region

– Simply creates new Pthreads, and offloads thread 
scheduling to OS

– Need manual guidance to avoid thread oversubscription 
using number of IDLE threads

§ Number of IDLE threads at MPI runtime is UNKNOWN!
§ Our solution: keep track on thread idleness at OMP 

runtime and expose such info to MPI
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MPI_Function (…)
{

/* Parallel algorithm */
#pragma omp parallel for
{…}

}

if ( num_idle_threads < N  )
{    /* Sequential algorithm */ }

else
{     /* Parallel algorithm */ }   

20

#pragma omp parallel
#pragma omp single
{

MPI_Function() 
{

#pragma omp parallel
{…}

}
}

Creates N Pthreads !

Creates N Pthreads !

num_threads (num_idle_threads)



Performance of MPI Communication with Cross Runtime Coordination

§ Parallelizes various aspects of the MPI processing
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Take Away from Cross-Runtime Coordination

§ Computing resources (e.g., CPUs, GPUs) are shared by coexisting runtime 
subsystems

§ Ways to make efficient use across libraries is under investigation 
– MPI + OpenMP 
– MPI + GPU

§ Low-level resource management facility might be beneficial?
§ Cross library/programming model interoperability plays the essential role

– E.g., OpenMP runtime exposes thread idleness to the other runtime subsystem
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Showcase 3: Co-Design for Low-Overhead Multithreading 
Communication
§ Multiprocess model (e.g., MPI, PGAS)

– Independent Virtual Address Space 
(VAS) and privatized variable sets

– Limitation: Inefficient intercore
communication & data sharing (e.g., 
message passing)

– Techniques to enable memory mapping
• POSIX shmem: 

– Explicit allocation (e.g., mmap)
– Heap only

• XPMEM: 
– Linux kernel module 
– Explicit & expensive exposing

§ Multithread model (e.g., OpenMP)
– Shared VAS and shared variable sets
– Limitation: Contention between threads 

on shared variables 
• E.g., expensive multithreading safety 

when integrating with process-based 
model such as MPI
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• It is known in the HPC community that 
multithreading MPI does not perform well!

• Have to use only single thread to call MPI
• Inefficient core utilization as discussed in

MT-MPI casestudy



PiP: HPC-Specialized “Thread” Implementation

§ Co-design of runtime system and low-level OS libraries 
§ Process-in-Process (PiP): a special combined execution model

– A process can access data owned by other processes w/o overhead (shared VAS)
– Variable sets are privatized by default, avoid unnecessary contention
– Get the good aspects of both multiprocess and multithread modes!
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Using PiP to Address Multithreading Limitations in MPI

§ Original Hybrid MPI+Threads
– Easy data sharing across cores
– Drawback: inefficient interaction with 

process-based runtime (e.g., MPI):

§ Hybrid MPI+PiP
– Use PiP tasks as the underlying support 

for multithreading runtime (e.g., 
OpenMP), similar to Pthreads

– Isolated MPI stacks similar to processes
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Performance Showcase with HPC-Specialized “Thread”
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Showcase 4: Specialized OS for HPC

§ Mckernal (developed by RIKEN, Japan)
§ Innovative OS for Fugaku, the Japanese 

exascale supercomputer
§ Light-weight multi kernel operating system 

designed specifically for HPC
– Scalable execution of large-scale parallelism
– Provide efficient memory/device management to 

minimize resource contention and data 
movement

– Eliminate OS noise by isolating OS services in 
Linux and provide jitter free execution on the 
light-weight kernel

– Support full POSIX/Linux APIs by selectively 
offloading system calls to Linux
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Image adapted from www.sys.r-ccs.riken.jp



Near Future in HPC: SW/HW Full-Stack Co-Design is Going to Be The Norm!

§ Emerging convergence of HPC and AI 
– Example: the DOE-NCI CANDLE project

• Integrate deep learning and simulation to enable 
precision medicine for cancer

• Understand disease by using growing volumes and 
diversity of cancer related data

• Provide guidance on treatments strategy for 
individual patients

• Leverage supercomputing systems for large 
memory capacity and fast floating point
computation

§ Future HPC systems for HPC/AI
– How much computational power do we expect for 

traditional scientific simulation?
– How much for inference-like data processing?
– Integrate AI-inspired HW into the classical HPC 

system?
– Application, programming model, runtime?
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HPE DPE. Image 
adapted from [1].

Ras-Driven Cancer. 
Image by David 
Kashatus/National 
Cancer Institute/Univ. 
of Virginia Cancer 
Center.

Google Edge 
TPU. Image 
adapted from 
medium.com

Mythic IPU. Image 
adapted from 
silvertonconsulting.co
m

Hybrid 
chip for 
HPC ?



Challenges and Opportunities in Co-Design for HPC Software

§ HPC is powerful but brings one of the most complex software/hardware stack in 
computer science

§ The architecture is going to be more and more heterogeneous due to diverse 
demands from applications and the limitations of performance, performance per 
watt, performance per cost...

§ Co-design has shown early success and will be the norm in Exascale Computing 
era and beyond!
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Exascale Computing Project Co-design Centers: integrate the 
rapidly developing software stack with emerging hardware 
technologies while developing software components that 
embody the most common application motifs.


