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Dynamic Adaptable Asynchronous Progress
Model for MPI RMA Multiphase Applications

Min Si, Antonio J. Peña, Jeff Hammond, Pavan Balaji, Masamichi Takagi, Yutaka Ishikawa

Abstract—Casper is a process-based asynchronous progress model for MPI one-sided communication on multi- and many-core
architectures. The one-sided communication is not truly one-sided in most MPI implementations: the target process still relies on
software progress to complete incoming operations. Casper allows the user to specify an arbitrary number of cores dedicated to
background ghost processes and transparently redirects the RMA operations to ghost processes by utilizing the PMPI redirection and
MPI-3 shared-memory technologies. Although Casper benefits applications that suffer from lack of asynchronous progress, the
operation redirection design might not support complex multiphase applications effectively, which often involve dynamically changing
communication density and computing workloads.
In this paper, we present an adaptive mechanism in Casper to address the limitation of static asynchronous progress in multiphase
applications. We exploit two adaptive strategies, a user-guided strategy and a fully transparent and automatic strategy based on
self-profiling and prediction, to dynamically reconfigure the asynchronous progress in Casper according to real-time performance
characteristics during multiphase execution. We evaluate the adaptive approaches in both microbenchmarks and a real quantum
chemistry application suite, NWChem, on the Cray XC30 supercomputer and an Intel Omni-Path cluster.
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1 INTRODUCTION

ADvances in high-end computing systems enable scien-
tists to solve complex and large-scale problems with

the integration of various fundamental solvers and algo-
rithm modules. Tuning the configuration of runtime systems
is a nontrivial task for obtaining highly efficient applica-
tion performance. This task can be particularly challenging
in multiphase applications because of their dynamically
changing characteristics of communication and computa-
tion during the execution of multiple internal phases, es-
pecially when some of the internal phases prefer exactly
opposite runtime configurations.

MPI is the dominant parallel programming model on
distributed-memory systems. The one-sided communica-
tion model (also known as remote memory access, or RMA)
allows one process to specify all communication parameters
for both the sending and receiving sides. Thus, a process
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can access a memory region of another process without
the target process explicitly needing to receive the message.
This asynchronous feature of RMA potentially provides a
natural model for some applications that rely on irregular
data movement [1], [2], [3], [4]. In practice, however, the
RMA communication is not truly asynchronous in most
MPI implementations. The reason is that even on RDMA-
supported networks such as InfiniBand and the Cray Aries
interconnect, most ACCUMULATE operations still have to
be handled in MPI software because of the limitations in
hardware and MPI semantics. The completion of software-
handled operations relies on explicit progress polling on
the target process (e.g., making MPI calls). Consequently,
an arbitrarily long delay in communication can occur if the
target is busy in computation outside MPI.

The traditional approaches to ensure asynchronous
progress for MPI communication have relied on two mod-
els. One is to utilize the background threads dedicated to
each MPI process in order to handle incoming messages
from other processes [5]. This model is widely provided in
mainstream MPI implementations [6], [7], [8], [9]. However,
the fundamental limitation of using this model in real
applications is that the thread-based concept requires as
many background threads as MPI processes on the system
node. Thus, the user has to choose either to lose half of the
computing cores or to enable expensive core oversubscrip-
tion. In addition, this model requires MPI multithreading
safety, which is known to be expensive because of the
internal thread synchronization [10]. The other model of
asynchronous progress is to utilize hardware interrupts to
awaken a kernel thread on the target side and process
the incoming RMA data within the interrupt context. The
interrupt-based model can be found in Cray MPI [11] and
in IBM MPI on the Blue Gene/P [12, Chapter 7]. Using this
model, however, is limited in that an interrupt has to be
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generated on the target side to process each incoming data
item, which can be expensive.

In our previous work, we proposed an alternative model
for asynchronous progress in MPI one-sided communica-
tion, called Casper [13]. Casper enables users to specify a
small number of cores as background “ghost processes”;
it then transparently intercepts all RMA communication
calls to the application processes and redirects them to the
hidden ghost processes. Thus, the data movement can be
completed by the ghost processes asynchronously while the
application processes are tied up by computation outside
MPI. Unlike the traditional models, such a process-based
model can avoid expensive overheads from either multi-
threading safety or system interrupts. More important, it
allows the user to control the number of cores being utilized
for asynchronous progress, which we believe is a more
suitable solution for applications running on multi- and
many-core architectures.

The basic concept of Casper is to redirect the RMA
communication to a few ghost processes. This is suitable
for common cases that need only a few cores to trigger data
movements while the other resources are used to accelerate
computing tasks. However, this design raises a potential
bottleneck in that a large number of software-handled oper-
ations, which were handled by multiple cores on the node,
are aggregated to only one or a few “asynchronous cores”
in Casper. Such a small number of progress resources might
not be able to complete intensive operations quickly. In par-
ticular, when the application does not involve heavy com-
putation and communication becomes dominant, this bot-
tleneck might even counteract the benefit of asynchronous
progress and result in poor performance. For single-phase
applications, the user of Casper can adjust the number of
cores according to the workloads of communication and
computation. This method becomes impractical, however,
when the application comprises multiple phases, some of
which even indicate opposite performance patterns. That is,
the computation-dominant phases can benefit from asynchronous
progress with only a small number of asynchronous cores, but
some other communication-intensive phases might suffer perfor-
mance degradation because of the overaggregated operations in
Casper. Thus, there is no way to deliver optimal performance
for overall execution.

To address such complications, we present an adaptive
mechanism in this paper that allows Casper to dynamically
reconfigure the asynchronous progress during the execution
of an application’s multiple phases. We analyze the per-
formance trade-off with regard to RMA progress, and we
design the adaptation to pursue the optimal performance for
the overall execution of multiphase applications. We exploit
two strategies. One is a user-guided strategy where the
user can trigger reconfiguration in every application phase
through MPI info hints. The other is a fully transparent strat-
egy that involves automatic self-profiling and performance
prediction at application runtime.

We design the framework to ensure strict correctness in
accordance with MPI-3 semantics. We evaluate the proposed
adaptive approaches through a set of microbenchmarks and
a real application suite on a Cray XC30 supercomputer and
an Intel Omni-Path Fabric-based cluster. We conclude that
the process-based asynchronous progress model is a highly

efficient, flexible, and portable approach for MPI RMA.

2 BACKGROUND

In this section, we briefly introduce the MPI RMA communi-
cation model and its implementation limitations on modern
network architectures. Here we highlight the important se-
mantics on which this work highly relies. A comprehensive
description of RMA semantics can be found in the MPI
standard [14] and past papers (e.g., [15]).

MPI RMA Semantics: MPI RMA is introduced in the MPI-2
and MPI-3 standards. To initialize an “RMA conversation,”
every process in the communicator collectively creates a
window as the exposure of its local memory region, and a
data-transferring phase (called epoch) is opened and closed
by a set of synchronization calls. During the epoch, a process
can access the memory region on a remote process by
issuing an RMA operation.

MPI defines an active-target synchronization mode,
which includes the fence and post-start-complete-wait (PSCW)
epochs, and a passive-target mode, which includes the lock
and lockall epochs. A fence epoch requires all processes
in the window to make the MPI_WIN_FENCE synchroniza-
tion call; a PSCW epoch requires the processes in the
origin group and those in the target group to make the
MPI_WIN_START|COMPLETE and MPI_WIN_POST|WAIT calls, re-
spectively; the lock or lockall epoch requires only the origin
process to make the MPI_WIN_LOCK|UNLOCK{ALL} calls.

The data movement in RMA is defined through the
operation calls including PUT, GET, and a set of ACCU-
MULATE operations (i.e., ACCUMULATE, GET ACCUMULATE,
FETCH AND OP, and COMPARE AND SWAP, denoted by ACC,
GET ACC, FOP, and CAS, respectively). The ACCUMU-
LATEs guarantee strict ordering and atomicity for element-
wise atomic access to remote memory locations (see
page 461 in [14]). A closing synchronization call or an
MPI_WIN_FLUSH{ALL} call in the passive target mode ensures
the completion of operations.

RMA Implementation: The one-sided semantics enables
MPI runtime developers to offload the data movement to
the hardware of remote direct memory access (RDMA)-
supported networks such as InifiBand, Cray Aries, and
Fujitsu Tofu. However, the state-of-the-art implementations
are usually limited by two factors. First, most RDMA
networks are able to process only simple data formats
because of the limited processing power on the network
interface controller. Complex operations such as computing
a multidimensional noncontiguous double array still have
to be handled by CPUs in the MPI software. Second, the
RMA semantics force the runtime to guarantee ordering and
atomicity among ACCUMULATE operations. Thus, none of
the ACCUMULATEs can be offloaded as long as a data format
is unsupported in hardware. Consequently, the MPI im-
plementations for RDMA networks (e.g., MVAPICH, Cray
MPI) usually only offload PUTs and GETs with simple data
formats to the hardware and keep the handling of other
operations in MPI stack.
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3 CASPER OVERVIEW AND CHALLENGE

In this section, we present a brief overview of the Casper
framework [13], [16] and discuss the challenge we observed
in multiphase applications.

3.1 Overview

Casper is a process-based asynchronous progress model for
MPI RMA on multi- and many-core architectures [13], [16].
It allows a few user-defined cores to be kept aside as back-
ground “ghost processes,” which are dedicated to helping
the asynchronous progress for the application processes on
the same node.

Casper is designed as an external library through the
PMPI name-shifted profiling interface of MPI and transpar-
ently provides asynchronous progress for any RMA com-
munication by overloading the necessary MPI functions.
This design allows Casper to be platform and MPI imple-
mentation independent and enables the user to easily link
Casper into the application binary.

When an application process tries to allocate an RMA
window, Casper intercepts this call and internally allocates
a shared-memory window for all application processes and
the ghost processes that are on the same node, using the
portable MPI-3 MPI_WIN_ALLOCATE_SHARED function. Thus,
the ghost processes are able to access the window region
located in the memories of the application processes. Then
whenever a process tries to issue an RMA operation to
the target process, Casper intercepts the call through PMPI
and transparently redirects this message to a ghost process
on the target node. The ghost processes simply wait in
an MPI_RECV loop. Therefore, the MPI runtime can quickly
make progress for any operations that are handled in the
software stack of those ghost processes, and RMA opera-
tions that are offloaded to hardware see no difference in the
way they behave.

The optimal number of ghost processes is platform spe-
cific and application specific. Choosing the optimal config-
uration is essentially a trade-off between the number of
resources assigned for computation and that assigned for
RMA progress. In practice, using one ghost process per node
or one per socket is sufficient for most scientific applications
running on CPU cores. This allows the remaining cores to
be used to fulfill the heavy computing tasks.

3.2 Challenge in Multiphase Applications

Although using only one or a few asynchronous cores is
suitable for most applications, such a small number of
progress resources might also lead to a performance bot-
tleneck in some cases. That is, intensive software-handled
RMA operations that were completed by a number of ap-
plication cores on a node are redirected to a few cores in
Casper. This processing of overaggregated operations can be
slow and might eventually degrade the overall performance
of an applications if the following two conditions are met:
(1) the portion of computation is less significant than the
data movement cost, and (2) the number of dedicated cores
is much smaller than that of the remaining computing cores.

In most single-phase applications, the user of Casper can
empirically adjust the number of cores for ghost processes in

order to avoid the second condition. Such a method becomes
impractical, however, when the application involves multi-
ple internal phases and especially when some of the heavy
phases perform opposite performance characteristics. For
instance, an internal phase may perform extremely expen-
sive computation with little data movement, but the other
phase may be dominated by enormous communication. It
can be optimal to the former if redirecting communication to
only a single asynchronous core in Casper, since the majority
of core resources are still used to accelerate the computa-
tion; but such a setting can cause a severe overaggregation
bottleneck in the latter phase. Unfortunately, a performance
trade-off must be made for overall execution.

To provide the optimal overall performance, we need
an adaptive mechanism in Casper that dynamically updates
the message redirection for different application phases.
Specifically, we need to address the following questions.

Q-1. When does an adaptation become necessary?
Q-2. How can we make the adaptation?
Q-3. Where can the adaptation be taken?

4 DECOMPOSING RMA PROGRESS

To answer Q-1, we need first to understand the MPI inter-
nal overhead for RMA communication. Because the asyn-
chronous progress is needed only when the target process
cannot make progress (e.g., computing outside MPI), we
consider the simple scenario where the origin process ini-
tializes and completes the RMA conversation (e.g., issuing
an ACC and waiting in a flush) and the target process does
computation. Figure 1 demonstrates the lifetime of such an
RMA progress.

Target COMP Handling

Progress without Casper
Origin Issuing Complete

Ghost
Origin Issuing Complete

Handling

Progress with Casper

Fig. 1. Decomposing RMA progress.
We decompose the completion of an RMA conversation

into four portions: the operation issuing taken by the origin
process, the network transfer between the origin and the
target nodes, the operation handling on the target side,
and the local completion on the origin side (e.g., receiving
an ACK message in the software handled operation). We
abbreviate the cost of each portion as Tis, Tnt, Thd, and Tdn,
respectively. Moreover, we consider the worst case that the
message arrives on the target just when the target process
joined a computation task that takes Tcomp time; thus the
message cannot be handled until the target computation fin-
ishes. Consequently, we can formulate the execution time of
the original case as T original = Tis+Tnt+Thd+Tcomp+Tdn.

We then formulate the cost when Casper is involved. Un-
like the original case, Casper redirects the message to a ghost
process. Thus the message can be immediately handled.
Therefore, the execution time is T csp = Tis+Tnt+Thd+Tdn.

One might expect that T csp should be always smaller
than T original. In practice, the relationship is actually more
complicated. An important factor is that we always have
a number of processes and take away only a few of them
as ghost processes. Therefore, a ghost process might receive
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messages instead of multiple target processes, leading to the
aggregation of Thd. Let us set the ratio of target processes to
a ghost process as r. Thus we finalize the cost with Casper
as T csp = Tis+Tnt+rThd+Tdn.

Now we can conclude that when the aggregated message
handling cost in Casper (rThd) is less significant than the target
computation (Tcomp), the Casper redirection should improve per-
formance; in contrast, when rThd becomes more expensive than
Tcomp, then the overaggregation bottleneck appears.

Ideally, one would like to measure and compare the
overhead of each portion during the execution. However,
the MPI standard does not expose a portable interface that
allows the user to insert timers and query the information
for an arbitrary internal step. Obtaining the cost of the RMA
message handling has to rely on the implementation-specific
support of MPI tools interface (MPI_T).

5 ADAPTABLE ASYNCHRONOUS PROGRESS

In this section, we focus on Q-2 and Q-3 through the design
and implementation of the adaptive mechanism in Casper.

5.1 Principle of Adaptation
When the overaggregation risk appears, one way to imple-
ment adaptation in Casper is to dynamically assign more
resources to asynchronous progress. Thus the aggregated
handling cost can be eliminated (i.e., reduced r, the ratio of
target processes to a ghost process). The obvious drawback,
however, is that we need to dynamically transfer some
application processes to the “ghost group,” which will result
in heavy data repartitioning, or we have to make expensive
process oversubscription through MPI dynamic process.1

To minimize the overhead of adaptation, we choose a
more lightweight approach. That is, we disable the redirection
when the overaggregation issue becomes significant, so that the
operation messages can be handled by sufficient processes; when
the overaggregation issue disappears and the delay caused by
computation becomes dominant, we re-enable the redirection (Q-2
is answered).

We notice that this strategy has two potential issues
when the redirection becomes disabled. The first is that
the messages may suffer from the lack of asynchronous
progress again, since they are now handled by the appli-
cation processes. Given that the disabled setting is needed
only when communication becomes dominant, we believe
the application processes should be able to make sufficient
progress by themselves. The second issue is that the cores
dedicated to ghost processes are unutilized. Since the num-
ber of dedicated cores is usually small, we consider that this
limitation is acceptable.

Following the basic adaptive approach, we then imple-
ment the mechanism in two directions. We first study a
strategy based on user guidance. The assumption is that the
user knows the performance characteristics of each internal
phase; thus the user can request Casper to enable or disable
redirection for each particular phase by passing hints to
Casper at the beginning of that phase. The simplified so-
lution allows us to concentrate on the important semantics

1. The MPI dynamic process concept allows a program to spawn
additional MPI processes during execution. However, the support of
dynamic process is limited on HPC systems; for example, the MPICH
implementation supports it only on TCP networks.

correctness according to the MPI standard. As the second
direction, we design a fully automatic strategy based on the
idea of self-profiling. In the following sections, we describe
the design of each strategy separately.

5.2 User-Guided Adaptation

Casper is required to maintain the consistency of message
redirection over all processes in an RMA window. The
reason is that any simultaneous operations issued to the
same target in that window must always be handled only by
a single process, in order to ensure the ordering and atomicity
of ACCUMULATEs. Therefore, we allow the user to reconfig-
ure through an MPI call only when the call guarantees that
all window-wide outstanding operations are completed and all ap-
plication processes in the window can collectively apply the same
change. Specifically, the reconfiguration can be done either at
a window allocation or at a window-wide synchronization
call that meets both conditions (Q-3 is answered). Therefore,
we consider three levels of granularity.

Global Configuration: The user can specify a global config-
uration applied to the entire execution through the environ-
ment variable CSP_ASYNC_CONFIG with two possible values,
ON or OFF, to enable or disable the redirection in Casper.

Window Configuration: Whenever a process allocates
a window, the user can pass the MPI info hint
async_config=ON|OFF to reconfigure for the communication
performed through that window.

Sync-Phase Configuration: Epochs are the natural synchro-
nization phases. However, not all the epochs can perform
adaptation. For instance, the synchronization calls in PSCW
and the passive target epochs involve only partial processes
of the window. Thus, updating in those calls can break the
correctness. We can safely reconfigure only in fence. Users
can pass the async_config info hint for a fence epoch by
inserting MPI_WIN_SET_INFO before the starting fence call.
We require the value of this info to be identical across
all processes. Additionally, we propose a new “collective”
info hint symmetric=true|false that users can pass in
MPI_WIN_SET_INFO. The symmetric=true hint is parsed in
Casper, meaning that the user ensures that all outstanding
operations in the window have been completed and all
processes have arrived at this call. This allows Casper to
trigger an adaptation in MPI_WIN_SET_INFO; thus it is useful
especially within the passive target epochs. For instance, it
can be used after a flush all-barrier, which commonly exists
in passive target programs.

5.3 Transparent Profiling-Based Adaptation

We next introduce techniques to enable the fully auto-
matic adaptation. Instead of user guidance, we want to
dynamically predict the impact of redirection in Casper
for an application phase. This is based on the notion that
the application usually performs a similar communication/
computation pattern at a certain period of execution time
(e.g., in the same solver). Therefore, we can study the
performance of a recent period of execution, assume that
the pattern continues for the upcoming period, and use the
pattern to trigger adaptation in the Casper runtime.
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The key challenge of this approach is that, in order
to ensure portability of Casper, we need to obtain the
performance information under the constraint that we uti-
lize only the PMPI layer resources. Moreover, we need to
address a second challenge, namely, that the dynamically
predicted results are applied to all processes in the window
consistently. Similar to the user-guided approach, we rely
on a collective synchronization at the window allocation
or synchronization calls for updating the redirection. Al-
though this solution does not show any problem in the user-
guided approach, it can result in failure of adaptation in the
profiling-based solution if the timing of the synchronization
in the application code does not match the change of per-
formance. For instance, the computation can become heavy
after a window is allocated, but there may not be any MPI
call that allows Casper to perform the synchronization.

In the remainder of this section, we describe our solution
as separated into three key components: the self-profiling
and local prediction, a basic window-wide synchronization
framework, and a special ghost-offloaded synchronization.

5.3.1 Self-Profiling and Local Prediction
Through only the timers inserted in PMPI layer, it is imprac-
tical to measure the time of RMA internal portions because
they can be processed internally at arbitrary MPI calls.
Therefore, instead of focusing on only the message-handling
cost rThd, we try to obtain an approximate relationship
between the computation time Tcomp and the overall com-
munication time Tcomm. Theoretically, in a specific pattern
(e.g., the same operations with the same data size and
format), the proportion of Thd related to the other internal
portions should be the same on a system with the same MPI
environment. Therefore, if rThd > Tcomp, we should be able
to obtain xTcomm > Tcomp, where the value of parameter x
is approximately identical for a specific pattern.

This notion allows us to build an approximate prediction
model. We define a communication percentage rate criterion
CR = Tcomm/(Tcomm+Tcomp) to indicate the proportion
of communication time Tcomm in the overall execution time
(Tcomm+Tcomp). We note that Tcomp includes any time that
is spent outside MPI (e.g., computation, I/O). We employ
an offline preprocessing step to determine the reference
values of CR that indicate that the communication with
asynchronous progress redirection takes the same amount
of time as redirection disabled for different communication
patterns and for different system deployments. We store
the CR reference values for a system and use them as the
threshold of real-time adaptation. When the user executes
an application, the Casper runtime can perform online
profiling and periodically predict the setting based on a
corresponding threshold. Below, we describe each step.
Offline Preprocessing: In this step, we design benchmarks
to simulate various communication patterns and estimate
the CR rate when the condition (Tcomm = T original =
T csp) is met. The RMA overhead construction can vary
depending on several factors as listed in Table 1. Thus our
preprocessing experiments must cover many different sets
of those values in order to reduce the deviation. The second
column in the table shows the input matrices generated in
our benchmark. In Section 7.2 we describe the benchmark
details and study the results obtained on our test platforms.

TABLE 1
Important factors for RMA overhead construction.

Factor Sample Inputs Used in Offline Preprocessing
Data size Data size in bytes.
Datatype Contiguous: double; Strided: 3D subarray (double).
Operation type PUT; GET; ACC; GET ACC; FOP; CAS.
Blocking pattern Blocking: flush for every OP;

Nonblocking: flush for multiple OPs.
Target pattern (t) All-to-1-node: Everyone issues OP to the procs on one node;

All-to-all: Everyone issues OP to all procs.
Num of procs (n) Total number of processes.
Num of ghosts (g) Number of ghost processes on a node.

P0 P1 P2

Computation
MPI calls

LEGENDPrediction

Time
0

4

(a) CR Calculation.

P0 P1 P2

F O F

2. Window-wide sync (ALLGATHER) at 
WIN_ALLOCATE | FENCE | WIN_SET_INFO(symm)

F O F F O F

config = OFF ON OFF

1. Local prediction at PREDICT_INT intervals

(b) Win-wide Synchronization.

Fig. 2. Self-profiling adaptation.

Online Profiling: During the application execution, we pe-
riodically measure the real-time CR rate for every period of
execution. We insert timers in every MPI function through
the PMPI wrapper in Casper to accumulate the time spent
in communication Tcomm and the overall execution time
(Tcomm+Tcomp). As shown in Figure 2(a), we locally cal-
culate the rate of CR on every process for the period during
two prediction points by using the accumulated times. For
instance, a 75% rate is obtained on P0 in the example.
Local Prediction: The next step is to locally predict the new
configuration for the upcoming period of a process based
on the latest real-time CR rate and the threshold obtained
offline. A rate higher than the threshold means that the time
the process makes progress in the MPI stack should be suffi-
ciently long to potentially cause operation overaggregation
if redirection is enabled (i.e., rThd > Tcomp). Conversely, a
rate lower than the threshold indicates a large proportion of
computation (i.e., rThd < Tcomp) on this process; enabling
asynchronous progress in this case becomes more beneficial.
We further use a two-level threshold HIGH_CR and LOW_CR to
avoid frequent fluctuations among large varieties of com-
munication patterns and data characteristics. To ensure a
sufficient base of profiling time for every prediction, we
also define the threshold PREDICT_INT in order to control
the interval between two predictions.

5.3.2 Window-Wide Synchronization
After the local prediction on every target process, we need to
coordinate with the origin side. Thus, the origin process can
decide whether to redirect to a ghost process when issuing
operation to that target. Similar to the restriction in the user-
guided approach, the window-wide synchronization must
be done with either a window allocation or special synchro-
nization calls such as MPI_WIN_FENCE or MPI_WIN_SET_INFO

with a symmetric hint.
This component is implemented in a straightfor-

ward way such that every process in a window collec-
tively exchanges the last predicted configuration by using
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P0 P1

G0

P2

P3 P4

G1

P5

1. Update prediction (ACC)

2. Global SYNC (ALLGATHER)
at GSYNC_INT intervals

3. Notify LV2 is dirty (IBCAST)

4. Reload cache from 
LV2 to LV1 (GET_ACC) LV1 cache

LV2 cache

Local config

LEGEND

Remote config

Fig. 3. Ghost-offloaded synchronization.

MPI_ALLGATHER and stores the exchanged data in a local
array, as demonstrated in Figure 2(b). Therefore, when the
next communication starts, any two operations issued to the
same target on the window must both be redirected to the
ghost process or issued to the original target process.

5.3.3 Ghost-Offloaded Synchronization for PUT/GET
Although the window-wide synchronization ensures se-
mantics correctness, it also limits the adaptation to be valid
only at several MPI calls. Unlike ACCUMULATEs, PUT and
GET do not require ordering or atomicity. Thus they should
be adapted in a more flexible way that does not rely on the
existence of special MPI calls in the application code. There-
fore, we further investigate a ghost-offloading approach
for PUT and GET where the background ghost processes
periodically perform an asynchronous global synchronization
to exchange the predicted results for all processes. To mini-
mize the overhead, we carefully decouple the local synchro-
nization between the application processes and local ghost
processes and the global synchronization among ghost pro-
cesses, by utilizing a two-level cache mechanism as shown in
Figure 3. Below, we describe the detailed implementation.
Two-Level Caches: Every application process allocates the
level-1 cache (denoted by LV1) on its local memory to ensure
lightweight querying at frequent PUT/GET calls; a shared
window is then allocated among the application processes
and the first ghost process on every node called “sync
ghost” as the level-2 cache (denoted by LV2). Each cache is
an array that stores the latest configuration of all application
processes in the system and is created only once at MPI
initialization. The offset of the configuration for a particular
process is consistent in all processes’ caches. The example
shown in Figure 3 demonstrates the cache construction of six
application processes distributed on two nodes. Every cache
is a six-integer-elements array, where the elements from
offset 0 to 5 are responsible for the cached configuration
from process P0 to P5, respectively.
Local Updating: Whenever an application process performs
the prediction (see Section 5.3.1) on its local stack, it imme-
diately updates the result to the corresponding element in
the LV1 cache. If the value is different from the previous one
(e.g., changed from ON to OFF), the element in the LV2 cache
is also updated by issuing an ACC to ensure atomicity when
accessing the shared window.
Ghost-Offloaded Global Synchronization: Regardless of
the execution on application processes, the sync ghosts
perform a global exchange of the LV2 cache at specific
intervals defined by the threshold GSYNC_INT. Each of the
ghost processes sends out the elements corresponding to its
local application processes (shown as the solid blue blocks

in the LV2 cache in Figure 3) and receives remote values
from others through an MPI_IALLGATHER collective call.

Dirty Notification and Reloading: After a global synchro-
nization, each sync ghost issues a dirty notification to its
local processes in an MPI_IBCAST call that is periodically
tested on each process. Each process then reloads its LV1
data from the LV2 cache by using an GET ACC.

Per Operation Query: At the issuing of every PUT or GET,
the origin process queries the latest configuration of its
target through the LV1 cache, in order to decide whether
to redirect that operation.

Performance Optimization: The additional synchronization
can result in extra overhead in both global synchronization
and access to the LV2 caches. Avoiding any unnecessary
synchronization is nontrivial. For example, after a window-
wide synchronization on most processes in the system such
as that with a window allocation call, the first application
process on every node can directly update the synchronized
data into the node’s LV2 cache, and the sync ghosts can skip
the upcoming synchronization.

6 EXPERIMENTAL ENVIRONMENT

We performed our experiments on two platforms: the
NERSC Edison Cray XC30 supercomputer2 and the Ar-
gonne Bebop cluster.3 Table 2 summarizes their hardware
and software configuration. We highlight two important
features: (1) each node of Edison comprises two sockets of
the 12-core Intelr Xeonr E5-2695 v2 processor (Ivy Bridge)
with hyper-threading (HT) enabled, whereas the Bebop
node uses two sockets of the 18-core Intelr Xeonr E5-2695
v4 processor (Broadwell) without hyper-threading; and (2)
the Cray MPI 7.6.0 on Edison offloads contiguous PUT and
GET to hardware and handles other operations in software,
whereas the Cray MPI 7.2.1 and the Intel MPI on Bebop
handle all operations in software.

For the application case study, we used the large-scale
computational chemistry application NWChem version 6.3,
with MKL (version 11.2.1 and 2017.3.196 on Edison and
Bebop, respectively) as the external math library.

We compare the proposed adaptable Casper with orig-
inal MPI and several static asynchronous progress ap-
proaches as defined in Table 3. The approaches with
hardware-offloaded RMA employed the Cray MPI 7.6.0 on
Edison; all other approaches used either the Cray MPI 7.2.1
or the Intel MPI as listed in Table 2. The Cray MPI 7.2.1 sup-
ports a DMAPP mode that executes contiguous PUT and GET
in hardware and provides the interrupt-based asynchronous
progress for other operations. It is omitted in the evaluation
because of its known overhead due to frequent interrupts;
and, in fact, this mode is deprecated in Cray MPI 7.6.0.

7 MICROBENCHMARKS

In this section, we analyze the performance of the adaptive
approaches on five microbenchmarks. We use the Cray MPI
7.2.1 as the primary MPI version on Edison.

2. https://www.nersc.gov/users/computational-systems/edison
3. https://www.lcrc.anl.gov/systems/resources/bebop
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Fig. 4. Adaptation overhead at window collective synchronization on Edison (average of ten runs, and 1 ghost process is used in all Casper
approaches; error is less than 3%).

TABLE 2
Hardware and software configuration on two experimental platforms.

CPU Memory Interconnect HT Enabled
Edison 2×12-core Ivy Bridge 64 GB DDR3 Cray Aries Yes
Bebop 2×18-core Broadwell 128 GB DDR4 Omni-Path No

MPI RMA Implementation Default Async Casper

Edison
Cray MPI 7.2.1 All SW Thread static/adaptive
Cray MPI 7.6.0 HW contig PUT/GET Thread - ∗

Bebop Intel MPI 17.0.4 All SW Thread static/adaptive
∗Casper cannot execute with the Cray MPI 7.6.0 because of an issue in the MPI
implementation that has been reported and is being fixed. Thus we use the
Cray MPI 7.2.1 as the primary MPI version on Edison.

TABLE 3
Definition of evaluation approaches.

OrigMPI Original MPI with SW RMA and no async support.
OrigMPI/HW Original MPI with partial HW RMA and no async support.

Static Asynchronous Progress
CSP(g) SW RMA with Casper static redirection and g number of ghosts.
TH(D) SW RMA with thread async, dedicate 50% cores.

TH(O)∗ SW RMA with thread async, oversubscribe core.
TH(O)/HW Partial HW RMA with thread async, oversubscribe core.

Adaptable Asynchronous Progress
CSP(U) SW RMA with Casper user-guided adaptation.

CSP(GP) SW RMA with Casper profiling-based adaptation.
CSP(P) SW RMA with Casper profiling-based adaptation (only window-

wide sync).
∗Because the Cray MPI 7.2.1 was not available when we measured the thread(O)
approach, we used the FALLBACK mode of 7.6.0, which behaves the same as
7.2.1, handling all operations in software.

7.1 Overhead Analysis
We first evaluated the overheads caused by the proposed
adaptation in comparison with static Casper on Edison. We
ran the experiments on a single node with one ghost process,
and we varied the total number of application processes.

Window Allocation: Figure 4(a) shows the overhead of
MPI_WIN_ALLOCATE on an application process. Since we focus
only on the fence or lockall synchronization in our evalua-
tion, we set the epoch_type=fence,lockall info at the allo-
cation call for all the Casper approaches. This allows Casper
to create only one additional internal window, thus reducing
the cost of window allocation (see definition in [13]). We
also pass the async_config hint with either ON or OFF in the
user-guided approaches (denoted by CSP(U,ON/OFF)). Both
adaptive approaches show performance similar to that of
static Casper, delivering about 40% to 100% overhead com-
pared with the original MPI implementation. We note that
this overhead is because of the internal window creation
in Casper, which is unrelated to the proposed adaptation.
Although the CSP(U,OFF) approach disables the communica-
tion redirection, it still suffers from this overhead because
we always need to initialize the internal windows in case

the user re-enables redirection in the future phase.

Fence: Figure 4(b) compares the overhead at MPI_WIN_FENCE.
The overhead of static Casper compared with the original
MPI is due to the passive mode translation in Casper, as dis-
cussed in our previous work. The user-guided approaches
show performance similar to that of the static version,
because they do not involve any additional communication.
CSP(P) and CSP(GP) result in extra overhead because of the
additional MPI_ALLGATHER that exchanges the value of pre-
dicted new configurations among all processes. Moreover,
we see a consistent gap between CSP(P) and CSP(GP) at
close to 1 µs; this is because in CSP(GP) the first application
process on the node also updates the synchronized data into
the LV2 cache after a window-wide synchronization (see
Performance Optimization in Section 5.3.3).

Symmetric Info Setting: When the user passes the
symmetric=true hint into the MPI_WIN_SET_INFO call, we
can also perform adaptation. Figure 4(c) compares the as-
sociated overhead. The profiling-based approaches involve
additional MPI_ALLGATHER communication, thus showing in-
creasing overhead with increasing numbers of processes.
The additional 1 µs overhead of CSP(GP) compared with
CSP(P) is the same as in the fence experiment.

7.2 Offline Estimation for Predictive Threshold

We estimated the thresholds of CR rate in the profiling-
based adaptation through an offline preprocessing step. We
used a benchmark set to demonstrate a common RMA com-
munication pattern where every process performs RMA-
computation-RMA in multiple iterations following with a
barrier. The computation part was simulated as busy wait-
ing, allowing us to flexibly set different computation costs
(Tcomp). The RMA portion was dynamically generated to
cover all the combinations of the factor values as listed in
Table 1. For each test, the program automatically adjusted
the communication cost by increasing the number of oper-
ations until the average execution time with asynchronous
progress redirection in static Casper was more expensive
than the time with redirection disabled. We recorded all
measured CR rates that indicated an execution time differ-
ence in the range of ±5%. The benchmark set is available
online.4 We note that performing all the benchmarks is
expensive (e.g., consumed close to 260,000 core hours on
Bebop). However, we expect such a step is required only
once for an MPI environment.

4. https://github.com/pmodels/casper-dev/tree/dev-dynamic-
schd/preprocess
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We compared the trend of estimated rates with different
sets of factors on both the Edison (with Cray MPI 7.2.1)
and the Bebop platforms. We then devised an approach that
calculates the thresholds for later experiments.

Varying Operation Types, Datatypes, and Blocking Pat-
terns: We first summarize the trends of estimated CR rates
when we change only one of the following factors: operation
types, datatypes, and blocking patterns. Figures 5(a)–(c) and
Figures 5(f)–(h) show the trends on Edison over 192 cores
with 1 ghost process per node (n=192, g=1) and the trends
on Bebop with (n=288, g=1), respectively. Roughly speak-
ing, the estimated rates on Edison do not show significant
differences for different settings. However, the trends on
Bebop show significant diversity. For instance, the strided
ACCUMULATEs deliver a much higher CR rate than the other
types do, and the change of the blocking patterns with GET
also results in highly different rates.

Obviously, the diversity of CR rates can be highly plat-
form dependent. To make effective predictions for appli-
cations that often involve a mixture of multiple different
patterns, we processed the obtained benchmark results fol-
lowing a simple statistical approach. We calculated the mean
value of the results for each combination (e.g., a nonblocking
strided ACC) called a basic-mean. Then we varied the process
deployment setting (n, g) with different target patterns and
analyzed the distribution of these basic-means.

Varying Process Deployment: Figures 5(d) and (j) show
the all-to-1-node pattern with increasing numbers of n and
varying numbers of g on the test platforms. We notice
that the basic-means on Bebop are clearly distributed into
two ranges. This is the large diversity we observed in
the previous comparison. Figures 5(e) and (k) show the
same measurement but with the all-to-all target pattern. We
make two observations from the figures. The first is that
the greater the number of ghost processes, the higher the
CR rate that is required in order to reach a performance
bottleneck. This is because the ratio of target processes to a
ghost process (abstracted as r in Section 4) is reduced, and
thus the bottleneck becomes harder to reach. The second

observation is that the larger the number of target processes,
the higher the estimated rate. This is because of the reduced
proportion of Thd in the overall communication time.

We defined two strategies that calculate the thresholds.
In the first strategy, we calculate the overall boundaries of
the basic-means for every set of (n, t, g) on the platform.
When the deployment of (n, t, g) is specified, we directly
use the corresponding boundaries. Since t might change in
applications, we also defined a second strategy: taking the
average of all (n, t, g) boundaries for every set of (n, g).

7.3 Single-Phase Benchmark

Our third set of experiments focused on the usage of static
and adaptive asynchronous progress approaches in two
single-phase microbenchmarks. Specifically, the first one
performs a typical computation-intensive pattern (denoted
by COMP), and the second performs a communication-
intensive pattern (denoted by COMM). We defined a phase
where every process performs RMA-computation-RMA in
100 iterations following with a barrier. The phase was ex-
ecuted two times on every process in an all-to-all fashion.
In the COMP benchmark, we computed DGEMM in every
iteration with a total problem size M=N=K=192000, and
we issued a single GET-flush and ACC-flush in the first and
second RMA steps, respectively. In the COMM benchmark,
we reduced the total size of DGEMM toM=N=K=9600 and
increased the number of operations to 100 at the RMA steps.
Every RMA operation carries data with a 23 3D subarray
on the 83 window region as the target datatype and 8
contiguous double elements as the origin data structure.

We measured each experiment on 192 cores (8 nodes) on
Edison. Because the strided operations are handled in soft-
ware in all the MPI versions, we omitted the measurements
with OrigMPI/HW and TH(O)/HW. The OrigMPI approach uses
24 processes on every node, and we varied the number of
ghost processes from 1 to 8 in static Casper. Each serves
23, 22, 20, and 16 application processes per node, denoted
by CSP(1), CSP(2), CSP(4), and CSP(8), respectively. We spec-
ified two ghost processes in each adaptive approach. To
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Fig. 6. Performance of asynchronous progress approaches in single-
phase benchmarks over 192 cores on Edison (average of three runs,
and 2 ghost processes are used in CSP(U), CSP(P), and CSP(GP)).

enable adaptation also in the passive-target communication,
we added the win set info with symmetric hint after the
barrier call (see Section 5.2). In CSP(U), we specified the
global CSP_ASYNC_CONFIG=ON in the COMP benchmark and
set to OFF in the other one. In CSP(P) and CSP(GP), we set
the CR thresholds to {89%,95%} according to the offline
estimation for (n, t, g)=(192,all-to-all, 2), and we empirically
set PREDICT_INT to 1 second and GSYNC_INT to 2 seconds.

Figure 6 shows the performance results. Static Casper al-
ways reduces the communication cost in the COMP bench-
mark (Figure 6(a)) because of asynchronous progress, but
it also degrades the computation performance when using
more ghost processes because of losing computing power.
TH(D) delivers even worse performance than that of OrigMPI
because it occupies 50% computing cores. On the other
hand, a small number of ghost processes can result in
severe degradation in the COMM benchmark (Figure 6(b))
because of operation overaggregation. Such overhead can be
reduced by using more ghost processes, and the issue can
be completely resolved by disabling the redirection, shown
as CSP(U). However, the profiling-based adaptations, shown
as CSP(P) and CSP(GP), deliver significant overhead in the
COMM benchmark. The reason is that they can adapt only
after the first barrier, although CSP(GP) can partially help
GETs at an earlier time. In both benchmarks, TH(O) does not
show better results because of core oversubscription.

7.4 Multiphase Benchmark
Although the user can adjust the setting of static Casper
for the execution with a different pattern, achieving opti-
mal performance is impossible if a single execution con-
tains both patterns. Our fourth set of experiments used
such a multiphase benchmark. The benchmark contains
two sequential windows, each consisting of both a heavy-
computing period and a heavy-communicating period
(combination of the two single benchmarks in the preceding
experiments). Thus, every execution contains eight phases.

We used two ghost processes in all Casper approaches. In
CSP(U), we set the user hint async config=ON at each window
allocation call for the upcoming COMP phases, and we set
async config=OFF through win set info in front of the third
and the seventh phases for the next COMM phases. The
configuration of CSP(P) and CSP(GP) remained the same as
that in the preceding set of experiments.

TABLE 4
Expected adaptation of Casper configurations (U), (P), and (GP) in

multiphase benchmark involving up to 8 phases.

1 2 3 4 5 6 7 8
Approach COMP COMP COMM COMM COMP COMP COMM COMM

(U) ON ON OFF OFF ON ON OFF OFF
(P) ON ON ON OFF OFF ON ON OFF

(GP) ON ON ON/OFF OFF OFF/ON ON ON/OFF OFF
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Fig. 7. Comparison of asynchronous progress approaches in the multi-
phase benchmark over 192 cores on Edison (average of three runs, and
2 ghost processes are used in all Casper approaches).

As listed in Table 4, the three adaptive approaches can
result in different reconfigurations in every internal phase.
To be specific, CSP(U) can deliver the most precise adaptation
that enables redirection (ON) in every COMP phase and
disables it (OFF) in every COMM phase. CSP(P), however,
cannot promptly adapt to the third, fifth, and seventh phases
because it cannot apply the new predicted results until it
reaches win set info. CSP(GP) partially addresses this issue;
for example, the ghost-offloaded synchronization disables
redirection at the third and seventh phases only for GETs.

Figure 7 shows the results. Although the static CSP(2)
can reduce the cost of the COMP phases, it also degrades
the other phases that perform intensive communication,
resulting in an 11.1% degradation compared with that of
OrigMPI. As expected, CSP(U) achieves the greatest improve-
ment at 54.5%; CSP(P) cannot provide appropriate adaptation
at Phases 3, 5, and 7, as shown in Figure 7(b), resulting in
a 2.2% degradation; and CSP(GP) reduces the overhead at
those three phases by adapting GETs. The thread approaches
suffer from additional cost in either the COMP phases or the
COMM phases, similar to our observation in Figure 6.

7.5 Varying Adaptation Intervals

For our fifth set of experiments, we used the same mul-
tiphase benchmark to observe the impact of two interval
thresholds in the profiling-based approaches: PREDICT_INT
(see Section 5.3.1) and GSYNC_INT (see Section 5.3.3).

Figure 8(a) compares the per phase costs with varying
PREDICT_INT in CSP(GP) with a fixed GSYNC_INT at 2 seconds.
We omit the graph of CSP(P) because of space limitations.
We notice that the smallest interval, 0.1 seconds, can result
in imprecise adaptation especially in the COMP phases
(i.e., Phases 1, 2, 5, and 6 in CSP(GP)). The reason is that
the fragment of the executed period is so short that it
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Fig. 8. Comparison of varying adapting intervals in the multiphase
benchmark over 192 cores on Edison (average of three runs).

includes only the last few MPI calls; thus the profiling data
cannot represent the heavy computing characteristics. With
increasing internal time, CSP(GP) shows increasing overhead
in Phases 3, 5, and 7, where processes reconfigure for heavy
communication, because of the delay in prediction.

Figure 8(b) compares the per phase overhead of CSP(GP)
with varying GSYNC_INT and a fixed PREDICT_INT at 1 sec-
ond. It indicates a visible overhead in the COMM phases
that are contiguous to the preceding COMP phases (i.e.,
Phases 3 and 7) when a 1-second interval is set, because
of the frequent reloading executed on every application pro-
cess. Increasing the interval can lead to delays in adaptation,
especially in the heavy computing phase (i.e., Phase 5).

8 CASE STUDY: CHEMISTRY APPLICATION

In previous work we evaluated the NWChem application
with static asynchronous progress by focusing on particular
internal phases of the CCSD(T) method [13], [16]. Here we
focus on the overall multiphase execution.

NWChem Background: NWChem [1] is a widely used com-
putational chemistry application suite [17], [18]. NWChem
is developed on top of the Global Arrays [3] toolkit over MPI
RMA [19]. A typical get-compute-update mode is widely used
in all the internal phases of NWChem, which every process
essentially performs by varying the size of matrix-matrix
multiplication for multidimensional tensor contraction by
coordinating with others through RMA GET/ACC opera-
tions. Furthermore, NXTASK is the generic task-scheduling
component that assigns the “owner” for subdomain com-
puting tasks. It is implemented as a single FOP operation.

We note that most of the RMA operations in NWChem
exchange the subblocks of the global matrix. The subblock
data is represented as a strided subarray in MPI. Thus, the
hardware-offloaded PUT/GET cannot help performance.

Experimental Setup: We inserted a win set info with sym-
metric info at the Global Aarrays GA_SYNC call,5 since its se-
mantics ensure the completion of all outstanding operations
on all processes. CSP(GP) requires three kinds of predefined
thresholds: LOW|HIGH_CR, PREDICT_INT, and GSYNC_INT. We

5. GA_SYNC internally calls MPI flush all on all processes followed
by a barrier.
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Fig. 9. Single-phase DFT task for C240 with asynchronous progress on
Edison. Since OrigMPI/HW cannot complete in 5 hours, it is omitted. All
Casper approaches use 1 ghost process per node. COMP values are
shown in (b).

used the estimated CR thresholds from the results in Sec-
tion 7.2 following the second strategy; we decided the value
of interval thresholds according to the task execution time
within OrigMPI. CSP(P) is omitted since it is only for analysis.

We chose two widely used modules of NWChem in our
case study: the single-phase density functional theory (DFT)
and the multiphase CCSD(T).

8.1 Single-Phase DFT

Density functional theory is one of the most broadly used
methods in NWChem. It provides a good mix of efficiency
and accuracy to investigate the structural and electronic
properties of atoms and molecules. It contains only a single
internal phase in the implementation, which follows the get-
compute-update mode and utilizes NXTASK task scheduling.

We evaluated the DFT calculation for Carbon 240
(denoted by C240) with the 6-31G* basis set. We used
one ghost process in all Casper approaches; we set
CSP_ASYNC_CONFIG=ON in CSP(U); and in CSP(GP) we set
PREDICT_INT to 2 seconds, GSYNC_INT to 120 seconds, and
a CR rate range {75%,90%}, {75%,90%}, {80%,90%}, and
{85%,90%} for 192, 384, 768, and 1,536 cores, respectively.

Figure 9(a) compares the strong scaling of both static and
adaptive asynchronous progress approaches over a varying
number of system cores. OrigMPI does not scale because
of the significant delay in the blocking FOP operations in
NXTASK, as shown in Figure 9(b). All the asynchronous
progress approaches can eliminate such overhead; how-
ever, the thread-based approaches show increased over-
head in computation compared with the Casper approaches
as shown in Figure 9(b). This is because TH(D) occupies
50% computing cores and TH(O) oversubscribes cores. We
compare the static and adaptive approaches in Casper.
CSP(1) is clearly the best solution for the single-phase DFT.
CSP(U) gives similar performance, but CSP(GP) shows visible
communication overhead primarily because of the extra
synchronization and prediction error.

8.2 Multiphase CCSD(T)

The coupled cluster theory is one of the most popular ap-
proaches in quantum chemistry for solving electron correla-
tion in atoms and molecules with arbitrary accuracy require-
ments. The “gold standard” coupled cluster with singles and
doubles and perturbative triples method, known as CCSD(T), is
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Fig. 10. Internal phases in multiphase CCSD(T) with pVDZ on Edison.

one of the most accurate coupled cluster methods applicable
to large molecules to date.

CCSD(T) comprises four internal phases: self-consistent
field (SCF), four-index transformation (4-index), CCSD itera-
tion, and the noniterative (T) portion [20]. The overhead pro-
portion among these phases can vary in particular molecu-
lar problems. Figure 10 compares the overhead breakdown
of two sets of problems with OrigMPI: the water molecule
(H2O)n problems (n = 5; 10; 14; 16; 18; 21, denoted as
Wn), with the cc-pVDZ basis set, and the Acenes problems,
including naphthalene, anthracene, tetracene, pentacene,
and hexacene (denoted Nap, Ant, Tet, Pent, and Hexa,
respectively) with the aug-cc-pVDZ basis set. Each problem
is measured over the appropriate number of cores fitting its
memory requirement, as listed below the x-axis.

In all the water problems, the (T) portion consistently
dominates the cost of the entire task by close to 80%, and
the CCSD iteration takes the other 20%; the remaining
phases represent less than 2% of the time. The Acenes series
shows a different trend in each problem, where the (T)
portion indicates only a 52% cost in Tet and an even lower
proportion in others. Instead, the 4-index contributes more
overhead, representing 26–71% of the time. We note that the
SCF always takes less than 1% of the cost; thus it is merged
into the “Others” portion for simplicity.

8.2.1 Analysis with Static Asynchronous Progress

Next we looked into the performance issue of static asyn-
chronous progress. We chose two problem types: large W21
molecule over 1,704 cores and Tet over 240 cores. We compared
the performance impact on each internal phase by utilizing
the static Casper and thread-based approaches. We used the
same total number of cores on every computing node in all
approaches, some of which are dedicated to asynchronous
ghost processes/threads.

Trade-Off in Overall Execution: Figure 11 shows the task
execution time of the Tet problem. CSP(1) delivers the max-
imum improvement in the (T) portion by close to 50%, but
it also leads to more expensive CCSD iteration and 4-index.
With increasing numbers of ghost processes such overhead
is decreased, but the overhead of the (T) portion increases.
TH(D) follows the same trend, because it occupies half of
the computing cores. The TH(O) approaches do not perform
better because of core oversubscription. As a result, only an
8% improvement is achievable with 8 ghost processes.

The internal phases of W21 indicate trends similar to
those observed in Tet. Static Casper delivers the best im-
provement for the overall execution at 28% by using 2 ghost
processes, because the deduction of the degradations in
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Fig. 11. Trade-off in NWChem CCSD(T) for Tet-aug-cc-pVDZ with static
asynchronous progress over 240 cores on Edison. CSP(g) denotes
Casper with g ghost processes (g=1;2;4;8;10). The “Task Improve” rate
is calculated based on OrigMPI.

other phases can be reimbursed by the improvement in the
(T) portion, which dominates the entire cost by 80%.

Having studied the overall performance trend, we then
analyzed each specific internal phase. Since we observed
similar trends in each phase in both the W21 and Tet
problems, we have omitted the results of W21.

Four-Index Phase: Figure 12(a) shows the overhead of the
computation and RMA operations in the 4-index phase.
The degradation with small numbers of ghost processes
is caused mostly by ACCs, which degrade performance by
40x with one ghost process; but the GET portion, which
dominates the cost of the 4-index in OrigMPI, can benefit
from the redirection in Casper. After careful code reading
and profiling, we confirmed that this difference is due to
the different target patterns executed in these operations. To
be specific, all ACCs are issued as the all-to-1-node pattern
described in Section 7.2. GETs, on the other hand, are issued
following the all-to-all pattern.

CCSD Iteration Phase: Figure 12(b) shows the profiling
of the CCSD iteration phase. Different from the overhead
construction in the 4-index, the numerous all-to-all GETs
dominate the execution time by close to 80%, and the
DGEMM computation (shown as COMP) takes less than
10%. Such intensive communication can rarely benefit from
asynchronous progress if the operations are aggregated to
only a few ghost processes. Thus, four ghost processes are
required in order to balance the overaggregation overhead.

(T) Portion Phase: Figure 12(c) shows the overhead profiles
of the noniterative phase: (T). With OrigMPI, the heavy com-
putation takes 30 minutes, and GETs dominate the other half
of the cost. The overhead of GETs clearly indicates the delay
caused by lack of asynchronous progress. All the static ap-
proaches can asynchronously complete GET operations; thus
such overhead can be eliminated. With more cores dedicated
to ghost processes or threads, however, the computation
resources are also reduced, resulting in significant degrada-
tion in the computation. The TH(O) approaches show similar
degradation because of core oversubscription.

8.2.2 Dynamic Adaptation
We next evaluated the dynamic adaptive strategies on both
the Edison and Bebop platforms.

Weak and Strong Scaling: We evaluated CSP(U) and CSP(GP)
in both weak and strong scaling of the Acenes prob-
lems, by comparing them with OrigMPI and the static
approaches studied in the preceding section. In both
the static and adaptable Casper approaches, we specified



12

2.
6 

81
.7

 

61
.5

 

41
.1

 

8.
5 

1.
9 

1.
1 1.
6 

1.
0 

0

20

40

60

80

100

120

Orig
MPI

CSP
(1)

CSP
(2)

CSP
(4)

CSP
(8)

TH
(D)

TH
(O)

Orig
MPI/HW

TH
(O)/HW

Ti
m

e 
(m

in
)

COMP ACC GET PUT FOP Sort

(a) 4-index phase (showing ACC values)

16
.3

 

33
.0

 

23
.4

 

15
.3

 

14
.8

 

14
.1

 21
.5

 

21
.0

 

19
.7

 

0

10

20

30

40

50

Orig
MPI

CSP
(1)

CSP
(2)

CSP
(4)

CSP
(8)

TH
(D)

TH
(O)

Orig
MPI/HW

TH
(O)/HW

Ti
m

e 
(m

in
)

COMP ACC GET PUT FOP Sort

(b) CCSD iteration phase (showing GET values)

27
.7

 

27
.3

 

30
.0

 

31
.2

 

32
.7

 

36
.1

 45
.0

 59
.5

 

52
.8

 

29
.6

 

53
.0

 

0

10

20

30

40

50

60

70

Orig
MPI

CSP
(1)

CSP
(2)

CSP
(4)

CSP
(8)

TH
(D)

TH
(O)

Orig
MPI/HW

TH
(O)/HW

Ti
m

e 
(m

in
)

COMP GET FOP Sort

(c) (T) portion (showing COMP/GET values)

Fig. 12. Profiling multiphase CCSD(T) for Tet-aug-cc-pVDZ with static asynchronous progress over 240 cores on Edison.
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two ghost processes per node. In CSP(U), we specified
CSP_ASYNC_CONFIG=ON and {OFF, OFF, ON} as the value of the
async_config infos passed to three internal phases: 4-index,
CCSD iteration, and (T) portion, respectively. In CSP(GP), we
specified the thresholds as listed in Table 5.

TABLE 5
Environment variables for CCSD(T) with profiling-based adaptation.

Edison: {CR(%)}, PREDICT INT(s), GSYNC INT(s) Bebop
Nap/24: {81,88}, 60, 2 Tet/240: {75,90}, 240, 2 Nap/36: {54,88}, 60, 2
Ant/96: {78,85}, 120, 2 Tet/384: {75,90}, 240, 2 Ant/72: {60,90}, 120, 2
Pyr/144: {75,90}, 120, 2 Tet/768: {80,90}, 240, 2 Pyr/108: {60,90}, 120, 2
Pent/456: {80,90}, 240, 2 Tet/1536: {85,90}, 60, 2 Tet/288: {60,90}, 240, 2
Hexa/840: {85,90}, 240, 2 Tet/3072: {85,90}, 60, 2 Pent/576: {60,90}, 240, 2

- - Hexa/1008: {65,95}, 240, 2

Figure 13 shows the results on Edison. In the weak-
scaling graph, we increase the problem sizes and numbers of
cores. The static CSP(2) shows significant degradation in the
execution of all multinode problems. TH(D) does not achieve
any improvement. TH(O) improves the execution by up to
20.0% at Ant; however, it also shows a 15.5% degradation
at Pent. The adaptable CSP(U) and CSP(GP), on the other

hand, consistently improve the execution for each problem
type by up to 23.2% at Hexa and 16.3% at Tet, respectively.
In the strong-scaling graph, both static Casper and the
thread-based approaches show consistent degradation in
performance, while CSP(U) and CSP(GP) can resolve such in-
efficiency. CSP(U) delivers the best performance by utilizing
user hints, achieving up to 21.8% speedup; CSP(GP) provides
a fully automatic solution; and it improves performance
up to 16.3%. When scaling to 3,072 cores, CSP(2) becomes
the best option because the 4-index becomes dominated
by numerous all-to-all GETs that benefit from asynchronous
progress with only two ghost processes.

Figure 14 shows the weak scaling on Bebop. TH(O) deliv-
ers significant overhead because it oversubscribes without
hyper-threading. CSP(GP) shows higher overhead than the
results on Edison because of the overestimated range of CR
thresholds. For instance, the 60% LOW_CR used in Ant was
generated by the nonblocking GET patterns in preprocessing
(see Figure 5 (h)), which is never used in the application.
This caused the delay of adaptation in (T).
Internal Phase Overhead: We chose the Tet problem with
240 cores of Edison as the base of our profiling. We first
compared the overhead of each phase with different ap-
proaches. We also added CSP(P) (see definition in Table 3)
in this experiment. As shown in Figure 15(a), both CSP(U)
and CSP(GP) can correctly resolve the overhead in the 4-
index and improve the performance for the (T) portion, but
CSP(P) cannot improve the overall performance because of
the expensive overhead in the (T) portion.

We then compared the overhead distributed in each
phase. Figure 15(b) indicates that all the adaptive ap-
proaches resolve the overhead caused by overaggregated
ACCs in the 4-index. With regard to the (T) portion, as shown
in Figure 15(c), CSP(U) behaves the same as CSP(2) because it
re-enables the redirection at the beginning of (T). CSP(P), on
the other hand, cannot reduce the GET overhead because no
synchronization call exists in the application code. CSP(GP)
eliminates the overhead of GET by re-enabling asynchronous
progress through ghost-offloaded synchronization. In addi-
tion, we notice an overhead of close to 3 minutes in the GET
and FOP portions in CSP(GP) compared with CSP(U), because
of the interval set for ghost synchronization.

We also observed that although CSP(GP) predicts on each
process separately, the majority of the processes always
make the same decision (e.g., 99% of the processes disabled
redirection in the 4-index, and all of them enabled in (T)).

9 RELATED WORK

In this paper, we focus on the use of Casper in multiphase
applications, and we propose several adaptive methods to
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Fig. 15. Profiling CCSD(T) for Tet-aug-cc-pVDZ with adaptation over 240 cores on Edison (using 2 ghost processes in all Casper approaches).

dynamically reconfigure asynchronous progress to resolve
operation aggregation imbalance. We divide the related
work into two broad topics: communication asynchronous
progress and dynamic adaptation for load balancing.

Communication Asynchronous Progress: Thread-based
asynchronous progress is considered the most common ap-
proach for supporting software progress and is found in
many MPI implementations such as MPICH and its deriva-
tives [6] [7] [8]. This model allows every MPI process to
utilize a background thread to asynchronously handle the
incoming messages from other processes. While being a
generic approach for various MPI communication models,
this approach also raises the restriction that a background
thread can make progress only for the process that spawned
it. Thus it has to deploy at least as many background threads
as MPI processes on every computing node. Consequently,
the user must choose either to dedicate half of the comput-
ing resources or to involve expensive core oversubscription.
Furthermore, this model forces MPI runtimes to support
multithreaded safety, which may result in further overheads
because of thread synchronization [10].

PIOMan [21] is a multithreaded communication engine
supporting thread-based asynchronous progress. It divides
rendezvous handshakes into multiple tasks and offloads
them to background threads running only on idle cores. This
approach, however, also suffers from a non-negligible over-
head derived from the necessary multithreaded safety [22].

Vaidyanathan et al. [23] contributed an approach for
asynchronous progress in the “MPI+X” model by utilizing a
dedicated thread together with a lock-free command queue.
The “MPI+X” model often utilizes multiple threads over
multi- or many-core systems to parallelize computation and
employs only a single MPI process per node for internode
communication. Thus, only a single asynchronous thread is
required per node.

The other well-known approach in the MPI commu-
nity is the interrupt-based asynchronous progress, which has
been supported on both Cray [24] and IBM systems [25]
[26]. This approach assumes that all processes are busy
in external computation, thus utilizing a system interrupt
to awaken the kernel thread to asynchronously complete
incoming messages. The design is straightforward; how-
ever, the implementation often relies on a platform-specific
lightweight interrupt engine; otherwise, severe performance
degradation might occur because of frequently issued inter-
rupts [20].

Supporting asynchronous progress is an essential task
for using the portable MPI in other runtime systems. Daily
et al. [27] proposed the approach to build the PGAS ComEX
runtime on top of MPI two-sided model, and they designed

a progress rank engine in ComEX that splits the MPI world
communicator and uses a subset of processes to help com-
munication progress.

Dynamic Adaptation and Load Balancing: Dynamic adap-
tation is a popular approach to dynamically balance ir-
regular workloads or adapt heterogeneous execution envi-
ronment and communication methods in both application
and runtime systems. Flaherty et al. [28] and Biswas et
al. [29] introduced their dynamic load balancer approaches
for irregular workloads in mesh applications by reparti-
tioning domains. As examples of runtime-level adaptation,
Bhandarkar et al. [30] proposed an MPI implementation on
top of the Charm++ environment that provides support for
processor visualization and balances the workloads by dy-
namically measuring idle time or through user hints. Some
researchers [31] [32] concentrated on generic autonomic
runtime management for workloads on distributed-memory
systems by implementing dedicated system modules.

Different from these works, we propose adaptive strate-
gies in a portable MPI asynchronous progress library to
resolve the operation overaggregation imbalance when pro-
viding asynchronous progress.

10 CONCLUSION AND FUTURE WORK

Casper is a portable process-based asynchronous progress
model for MPI RMA on multi- and many-core architec-
tures. Our previous work presented the basic framework
of Casper that sets aside a small number of cores as back-
ground ghost processes and redirects the user RMA opera-
tions targeting an application process to the ghost process,
thus enabling asynchronous completion of RMA communi-
cation. This redirection-based design, however, might also
result in operation overaggregation bottlenecks because of
the limited progress resources, especially when communica-
tion becomes dominant. Therefore, a performance trade-off
has to be made in multiphase applications.

In this paper, we proposed an adaptive mechanism for
Casper that resolves the overaggregation issue by disabling
operation redirection in communication-intensive phases
without affecting the benefit of asynchronous progress in
other computation-heavy phases.

We chose an approximate prediction model in the adap-
tation to detect performance in order to maintain the porta-
bility of Casper. This model relies on offline prepossessing to
sample the system performance matrices from a large set of
benchmarks. However, it might be imprecise if the pattern
of an application phase is not covered or large performance
diversity exists among different patterns such as the trends
observed on the Bebop system. Moreover, the real-time
prediction can be further affected by several factors such
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as system noise or temporary network delay. Although we
usually expect such noise to be small on high-performance
supercomputers, we should give the issue careful consider-
ation. Therefore, we plan to optimize the prediction model
based on dynamic heuristic in future work.
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